NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
Use:
>>> import heapq
>>> import numpy
>>> a = numpy.array([1, 3, 2, 4, 5])
>>> heapq.nlargest(3, range(len(a)), a.take)
[4, 3, 1]
对于常规的Python列表:
>>> a = [1, 3, 2, 4, 5]
>>> heapq.nlargest(3, range(len(a)), a.__getitem__)
[4, 3, 1]
如果使用Python 2,请使用xrange而不是range。
来源:堆队列算法
其他回答
如果你正在处理nan和/或理解np有问题。试试pandas.DataFrame.sort_values。
import numpy as np
import pandas as pd
a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
df = pd.DataFrame(a, columns=['array'])
max_values = df['array'].sort_values(ascending=False, na_position='last')
ind = max_values[0:3].index.to_list()
这个例子给出了3个最大的非nan值的索引。可能效率很低,但易于阅读和定制。
比较了编码的便捷性和速度
速度对我的需求很重要,所以我测试了这个问题的三个答案。
根据我的具体情况,对这三个答案中的代码进行了修改。
然后我比较了每种方法的速度。
编码智慧:
NPE的回答是最优雅的,也足够快地满足我的需求。 Fred foo的回答需要最多的重构来满足我的需求,但却是最快的。我选择了这个答案,因为尽管它需要更多的工作,但它并不太糟糕,并且具有显著的速度优势。 Off99555的回答是最优雅的,但也是最慢的。
测试和比较的完整代码
import numpy as np
import time
import random
import sys
from operator import itemgetter
from heapq import nlargest
''' Fake Data Setup '''
a1 = list(range(1000000))
random.shuffle(a1)
a1 = np.array(a1)
''' ################################################ '''
''' NPE's Answer Modified A Bit For My Case '''
t0 = time.time()
indices = np.flip(np.argsort(a1))[:5]
results = []
for index in indices:
results.append((index, a1[index]))
t1 = time.time()
print("NPE's Answer:")
print(results)
print(t1 - t0)
print()
''' Fred Foos Answer Modified A Bit For My Case'''
t0 = time.time()
indices = np.argpartition(a1, -6)[-5:]
results = []
for index in indices:
results.append((a1[index], index))
results.sort(reverse=True)
results = [(b, a) for a, b in results]
t1 = time.time()
print("Fred Foo's Answer:")
print(results)
print(t1 - t0)
print()
''' off99555's Answer - No Modification Needed For My Needs '''
t0 = time.time()
result = nlargest(5, enumerate(a1), itemgetter(1))
t1 = time.time()
print("off99555's Answer:")
print(result)
print(t1 - t0)
输出速度报告
肺水肿的回答是:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.1349949836730957
Fred Foo的回答:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.011161565780639648
off99555的回答是:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.439760684967041
Use:
def max_indices(arr, k):
'''
Returns the indices of the k first largest elements of arr
(in descending order in values)
'''
assert k <= arr.size, 'k should be smaller or equal to the array size'
arr_ = arr.astype(float) # make a copy of arr
max_idxs = []
for _ in range(k):
max_element = np.max(arr_)
if np.isinf(max_element):
break
else:
idx = np.where(arr_ == max_element)
max_idxs.append(idx)
arr_[idx] = -np.inf
return max_idxs
它也适用于2D数组。例如,
In [0]: A = np.array([[ 0.51845014, 0.72528114],
[ 0.88421561, 0.18798661],
[ 0.89832036, 0.19448609],
[ 0.89832036, 0.19448609]])
In [1]: max_indices(A, 8)
Out[1]:
[(array([2, 3], dtype=int64), array([0, 0], dtype=int64)),
(array([1], dtype=int64), array([0], dtype=int64)),
(array([0], dtype=int64), array([1], dtype=int64)),
(array([0], dtype=int64), array([0], dtype=int64)),
(array([2, 3], dtype=int64), array([1, 1], dtype=int64)),
(array([1], dtype=int64), array([1], dtype=int64))]
In [2]: A[max_indices(A, 8)[0]][0]
Out[2]: array([ 0.89832036])
这段代码适用于numpy 2D矩阵数组:
mat = np.array([[1, 3], [2, 5]]) # numpy matrix
n = 2 # n
n_largest_mat = np.sort(mat, axis=None)[-n:] # n_largest
tf_n_largest = np.zeros((2,2), dtype=bool) # all false matrix
for x in n_largest_mat:
tf_n_largest = (tf_n_largest) | (mat == x) # true-false
n_largest_elems = mat[tf_n_largest] # true-false indexing
这将产生一个true-false的n_maximum矩阵索引,也可以从矩阵数组中提取n_maximum元素
如果你碰巧在使用一个多维数组,那么你需要平展和解开索引:
def largest_indices(ary, n):
"""Returns the n largest indices from a numpy array."""
flat = ary.flatten()
indices = np.argpartition(flat, -n)[-n:]
indices = indices[np.argsort(-flat[indices])]
return np.unravel_index(indices, ary.shape)
例如:
>>> xs = np.sin(np.arange(9)).reshape((3, 3))
>>> xs
array([[ 0. , 0.84147098, 0.90929743],
[ 0.14112001, -0.7568025 , -0.95892427],
[-0.2794155 , 0.6569866 , 0.98935825]])
>>> largest_indices(xs, 3)
(array([2, 0, 0]), array([2, 2, 1]))
>>> xs[largest_indices(xs, 3)]
array([ 0.98935825, 0.90929743, 0.84147098])