NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

使用argpartition的向量化2D实现:

k = 3
probas = np.array([
    [.6, .1, .15, .15],
    [.1, .6, .15, .15],
    [.3, .1, .6, 0],
])

k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]

# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster

k_values = probas.flatten()[k_indices_flat]

# k_indices:
# array([[0, 2, 3],
#        [1, 2, 3],
#        [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
#        [0.6 , 0.15, 0.15],
#       [0.6 , 0.3 , 0.1 ]])

其他回答

我能想到的最简单的是:

>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])

这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。

如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。

我发现最直观的方法是使用np.unique。

其思想是,唯一方法返回输入值的索引。然后根据最大唯一值和索引,重新创建原始值的位置。

multi_max = [1,1,2,2,4,0,0,4]
uniques, idx = np.unique(multi_max, return_inverse=True)
print np.squeeze(np.argwhere(idx == np.argmax(uniques)))
>> [4 7]

这将比完整排序更快,这取决于原始数组的大小和选择的大小:

>>> A = np.random.randint(0,10,10)
>>> A
array([5, 1, 5, 5, 2, 3, 2, 4, 1, 0])
>>> B = np.zeros(3, int)
>>> for i in xrange(3):
...     idx = np.argmax(A)
...     B[i]=idx; A[idx]=0 #something smaller than A.min()
...     
>>> B
array([0, 2, 3])

当然,这涉及到对原始数组的篡改。你可以修复(如果需要)通过复制或替换回原始值. ...对你的用例来说,哪个更便宜。

您可以简单地使用字典来查找numpy数组中的前k个值和下标。 例如,如果你想找到前2个最大值和索引

import numpy as np
nums = np.array([0.2, 0.3, 0.25, 0.15, 0.1])


def TopK(x, k):
    a = dict([(i, j) for i, j in enumerate(x)])
    sorted_a = dict(sorted(a.items(), key = lambda kv:kv[1], reverse=True))
    indices = list(sorted_a.keys())[:k]
    values = list(sorted_a.values())[:k]
    return (indices, values)

print(f"Indices: {TopK(nums, k = 2)[0]}")
print(f"Values: {TopK(nums, k = 2)[1]}")


Indices: [1, 2]
Values: [0.3, 0.25]

使用argpartition的向量化2D实现:

k = 3
probas = np.array([
    [.6, .1, .15, .15],
    [.1, .6, .15, .15],
    [.3, .1, .6, 0],
])

k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]

# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster

k_values = probas.flatten()[k_indices_flat]

# k_indices:
# array([[0, 2, 3],
#        [1, 2, 3],
#        [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
#        [0.6 , 0.15, 0.15],
#       [0.6 , 0.3 , 0.1 ]])