NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

使用argpartition的向量化2D实现:

k = 3
probas = np.array([
    [.6, .1, .15, .15],
    [.1, .6, .15, .15],
    [.3, .1, .6, 0],
])

k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]

# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster

k_values = probas.flatten()[k_indices_flat]

# k_indices:
# array([[0, 2, 3],
#        [1, 2, 3],
#        [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
#        [0.6 , 0.15, 0.15],
#       [0.6 , 0.3 , 0.1 ]])

其他回答

我能想到的最简单的是:

>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])

这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。

如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。

简单的:

idx = (-arr).argsort()[:n]

其中n为最大值的个数。

当top_k<<axis_length时,它优于argsort。

import numpy as np

def get_sorted_top_k(array, top_k=1, axis=-1, reverse=False):
    if reverse:
        axis_length = array.shape[axis]
        partition_index = np.take(np.argpartition(array, kth=-top_k, axis=axis),
                                  range(axis_length - top_k, axis_length), axis)
    else:
        partition_index = np.take(np.argpartition(array, kth=top_k, axis=axis), range(0, top_k), axis)
    top_scores = np.take_along_axis(array, partition_index, axis)
    # resort partition
    sorted_index = np.argsort(top_scores, axis=axis)
    if reverse:
        sorted_index = np.flip(sorted_index, axis=axis)
    top_sorted_scores = np.take_along_axis(top_scores, sorted_index, axis)
    top_sorted_indexes = np.take_along_axis(partition_index, sorted_index, axis)
    return top_sorted_scores, top_sorted_indexes

if __name__ == "__main__":
    import time
    from sklearn.metrics.pairwise import cosine_similarity

    x = np.random.rand(10, 128)
    y = np.random.rand(1000000, 128)
    z = cosine_similarity(x, y)
    start_time = time.time()
    sorted_index_1 = get_sorted_top_k(z, top_k=3, axis=1, reverse=True)[1]
    print(time.time() - start_time)

如果你碰巧在使用一个多维数组,那么你需要平展和解开索引:

def largest_indices(ary, n):
    """Returns the n largest indices from a numpy array."""
    flat = ary.flatten()
    indices = np.argpartition(flat, -n)[-n:]
    indices = indices[np.argsort(-flat[indices])]
    return np.unravel_index(indices, ary.shape)

例如:

>>> xs = np.sin(np.arange(9)).reshape((3, 3))
>>> xs
array([[ 0.        ,  0.84147098,  0.90929743],
       [ 0.14112001, -0.7568025 , -0.95892427],
       [-0.2794155 ,  0.6569866 ,  0.98935825]])
>>> largest_indices(xs, 3)
(array([2, 0, 0]), array([2, 2, 1]))
>>> xs[largest_indices(xs, 3)]
array([ 0.98935825,  0.90929743,  0.84147098])

这里有一个更复杂的方法,如果第n个值有联系,则增加n:

>>>> def get_top_n_plus_ties(arr,n):
>>>>     sorted_args = np.argsort(-arr)
>>>>     thresh = arr[sorted_args[n]]
>>>>     n_ = np.sum(arr >= thresh)
>>>>     return sorted_args[:n_]
>>>> get_top_n_plus_ties(np.array([2,9,8,3,0,2,8,3,1,9,5]),3)
array([1, 9, 2, 6])