NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
使用argpartition的向量化2D实现:
k = 3
probas = np.array([
[.6, .1, .15, .15],
[.1, .6, .15, .15],
[.3, .1, .6, 0],
])
k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]
# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster
k_values = probas.flatten()[k_indices_flat]
# k_indices:
# array([[0, 2, 3],
# [1, 2, 3],
# [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
# [0.6 , 0.15, 0.15],
# [0.6 , 0.3 , 0.1 ]])
其他回答
如果你正在处理nan和/或理解np有问题。试试pandas.DataFrame.sort_values。
import numpy as np
import pandas as pd
a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
df = pd.DataFrame(a, columns=['array'])
max_values = df['array'].sort_values(ascending=False, na_position='last')
ind = max_values[0:3].index.to_list()
这个例子给出了3个最大的非nan值的索引。可能效率很低,但易于阅读和定制。
您可以简单地使用字典来查找numpy数组中的前k个值和下标。 例如,如果你想找到前2个最大值和索引
import numpy as np
nums = np.array([0.2, 0.3, 0.25, 0.15, 0.1])
def TopK(x, k):
a = dict([(i, j) for i, j in enumerate(x)])
sorted_a = dict(sorted(a.items(), key = lambda kv:kv[1], reverse=True))
indices = list(sorted_a.keys())[:k]
values = list(sorted_a.values())[:k]
return (indices, values)
print(f"Indices: {TopK(nums, k = 2)[0]}")
print(f"Values: {TopK(nums, k = 2)[1]}")
Indices: [1, 2]
Values: [0.3, 0.25]
如果你碰巧在使用一个多维数组,那么你需要平展和解开索引:
def largest_indices(ary, n):
"""Returns the n largest indices from a numpy array."""
flat = ary.flatten()
indices = np.argpartition(flat, -n)[-n:]
indices = indices[np.argsort(-flat[indices])]
return np.unravel_index(indices, ary.shape)
例如:
>>> xs = np.sin(np.arange(9)).reshape((3, 3))
>>> xs
array([[ 0. , 0.84147098, 0.90929743],
[ 0.14112001, -0.7568025 , -0.95892427],
[-0.2794155 , 0.6569866 , 0.98935825]])
>>> largest_indices(xs, 3)
(array([2, 0, 0]), array([2, 2, 1]))
>>> xs[largest_indices(xs, 3)]
array([ 0.98935825, 0.90929743, 0.84147098])
这段代码适用于numpy 2D矩阵数组:
mat = np.array([[1, 3], [2, 5]]) # numpy matrix
n = 2 # n
n_largest_mat = np.sort(mat, axis=None)[-n:] # n_largest
tf_n_largest = np.zeros((2,2), dtype=bool) # all false matrix
for x in n_largest_mat:
tf_n_largest = (tf_n_largest) | (mat == x) # true-false
n_largest_elems = mat[tf_n_largest] # true-false indexing
这将产生一个true-false的n_maximum矩阵索引,也可以从矩阵数组中提取n_maximum元素
Use:
from operator import itemgetter
from heapq import nlargest
result = nlargest(N, enumerate(your_list), itemgetter(1))
现在,结果列表将包含N个元组(index, value),其中value是最大的。