NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

简单的:

idx = (-arr).argsort()[:n]

其中n为最大值的个数。

其他回答

简单的:

idx = (-arr).argsort()[:n]

其中n为最大值的个数。

较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作

>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])

>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])

与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:

>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])

以这种方式获得排在前k位的元素需要O(n + k log k)时间。

Use:

def max_indices(arr, k):
    '''
    Returns the indices of the k first largest elements of arr
    (in descending order in values)
    '''
    assert k <= arr.size, 'k should be smaller or equal to the array size'
    arr_ = arr.astype(float)  # make a copy of arr
    max_idxs = []
    for _ in range(k):
        max_element = np.max(arr_)
        if np.isinf(max_element):
            break
        else:
            idx = np.where(arr_ == max_element)
        max_idxs.append(idx)
        arr_[idx] = -np.inf
    return max_idxs

它也适用于2D数组。例如,

In [0]: A = np.array([[ 0.51845014,  0.72528114],
                     [ 0.88421561,  0.18798661],
                     [ 0.89832036,  0.19448609],
                     [ 0.89832036,  0.19448609]])
In [1]: max_indices(A, 8)
Out[1]:
    [(array([2, 3], dtype=int64), array([0, 0], dtype=int64)),
     (array([1], dtype=int64), array([0], dtype=int64)),
     (array([0], dtype=int64), array([1], dtype=int64)),
     (array([0], dtype=int64), array([0], dtype=int64)),
     (array([2, 3], dtype=int64), array([1, 1], dtype=int64)),
     (array([1], dtype=int64), array([1], dtype=int64))]

In [2]: A[max_indices(A, 8)[0]][0]
Out[2]: array([ 0.89832036])

使用argpartition的向量化2D实现:

k = 3
probas = np.array([
    [.6, .1, .15, .15],
    [.1, .6, .15, .15],
    [.3, .1, .6, 0],
])

k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]

# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster

k_values = probas.flatten()[k_indices_flat]

# k_indices:
# array([[0, 2, 3],
#        [1, 2, 3],
#        [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
#        [0.6 , 0.15, 0.15],
#       [0.6 , 0.3 , 0.1 ]])

这里有一个更复杂的方法,如果第n个值有联系,则增加n:

>>>> def get_top_n_plus_ties(arr,n):
>>>>     sorted_args = np.argsort(-arr)
>>>>     thresh = arr[sorted_args[n]]
>>>>     n_ = np.sum(arr >= thresh)
>>>>     return sorted_args[:n_]
>>>> get_top_n_plus_ties(np.array([2,9,8,3,0,2,8,3,1,9,5]),3)
array([1, 9, 2, 6])