NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
简单的:
idx = (-arr).argsort()[:n]
其中n为最大值的个数。
其他回答
较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作
>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])
>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])
与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:
>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])
以这种方式获得排在前k位的元素需要O(n + k log k)时间。
我发现最直观的方法是使用np.unique。
其思想是,唯一方法返回输入值的索引。然后根据最大唯一值和索引,重新创建原始值的位置。
multi_max = [1,1,2,2,4,0,0,4]
uniques, idx = np.unique(multi_max, return_inverse=True)
print np.squeeze(np.argwhere(idx == np.argmax(uniques)))
>> [4 7]
使用argpartition的向量化2D实现:
k = 3
probas = np.array([
[.6, .1, .15, .15],
[.1, .6, .15, .15],
[.3, .1, .6, 0],
])
k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]
# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster
k_values = probas.flatten()[k_indices_flat]
# k_indices:
# array([[0, 2, 3],
# [1, 2, 3],
# [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
# [0.6 , 0.15, 0.15],
# [0.6 , 0.3 , 0.1 ]])
我能想到的最简单的是:
>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])
这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。
如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。
这段代码适用于numpy 2D矩阵数组:
mat = np.array([[1, 3], [2, 5]]) # numpy matrix
n = 2 # n
n_largest_mat = np.sort(mat, axis=None)[-n:] # n_largest
tf_n_largest = np.zeros((2,2), dtype=bool) # all false matrix
for x in n_largest_mat:
tf_n_largest = (tf_n_largest) | (mat == x) # true-false
n_largest_elems = mat[tf_n_largest] # true-false indexing
这将产生一个true-false的n_maximum矩阵索引,也可以从矩阵数组中提取n_maximum元素