NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
如果你不关心第k大元素的顺序,你可以使用argpartition,它应该比通过argsort进行完整排序执行得更好。
K = 4 # We want the indices of the four largest values
a = np.array([0, 8, 0, 4, 5, 8, 8, 0, 4, 2])
np.argpartition(a,-K)[-K:]
array([4, 1, 5, 6])
这个问题值得肯定。
我运行了一些测试,看起来随着数组的大小和K值的增加,argpartition的性能优于argsort。
其他回答
如果你不关心第k大元素的顺序,你可以使用argpartition,它应该比通过argsort进行完整排序执行得更好。
K = 4 # We want the indices of the four largest values
a = np.array([0, 8, 0, 4, 5, 8, 8, 0, 4, 2])
np.argpartition(a,-K)[-K:]
array([4, 1, 5, 6])
这个问题值得肯定。
我运行了一些测试,看起来随着数组的大小和K值的增加,argpartition的性能优于argsort。
如果你正在处理nan和/或理解np有问题。试试pandas.DataFrame.sort_values。
import numpy as np
import pandas as pd
a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
df = pd.DataFrame(a, columns=['array'])
max_values = df['array'].sort_values(ascending=False, na_position='last')
ind = max_values[0:3].index.to_list()
这个例子给出了3个最大的非nan值的索引。可能效率很低,但易于阅读和定制。
简单的:
idx = (-arr).argsort()[:n]
其中n为最大值的个数。
我认为最省时的方法是手动遍历数组并保持k-size的min-heap,正如其他人所提到的那样。
我还想出了一个蛮力方法:
top_k_index_list = [ ]
for i in range(k):
top_k_index_list.append(np.argmax(my_array))
my_array[top_k_index_list[-1]] = -float('inf')
在使用argmax获取其索引后,将最大的元素设置为一个较大的负值。然后argmax的下一次调用将返回第二大的元素。 您可以记录这些元素的原始值,并在需要时恢复它们。
我发现最直观的方法是使用np.unique。
其思想是,唯一方法返回输入值的索引。然后根据最大唯一值和索引,重新创建原始值的位置。
multi_max = [1,1,2,2,4,0,0,4]
uniques, idx = np.unique(multi_max, return_inverse=True)
print np.squeeze(np.argwhere(idx == np.argmax(uniques)))
>> [4 7]