NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
如果你不关心第k大元素的顺序,你可以使用argpartition,它应该比通过argsort进行完整排序执行得更好。
K = 4 # We want the indices of the four largest values
a = np.array([0, 8, 0, 4, 5, 8, 8, 0, 4, 2])
np.argpartition(a,-K)[-K:]
array([4, 1, 5, 6])
这个问题值得肯定。
我运行了一些测试,看起来随着数组的大小和K值的增加,argpartition的性能优于argsort。
其他回答
下面是查看最大元素及其位置的一个非常简单的方法。这里轴是定义域;对于2D情况,axis = 0表示列的最大数量,axis = 1表示行的最大数量。对于高维,这取决于你。
M = np.random.random((3, 4))
print(M)
print(M.max(axis=1), M.argmax(axis=1))
Use:
>>> import heapq
>>> import numpy
>>> a = numpy.array([1, 3, 2, 4, 5])
>>> heapq.nlargest(3, range(len(a)), a.take)
[4, 3, 1]
对于常规的Python列表:
>>> a = [1, 3, 2, 4, 5]
>>> heapq.nlargest(3, range(len(a)), a.__getitem__)
[4, 3, 1]
如果使用Python 2,请使用xrange而不是range。
来源:堆队列算法
这段代码适用于numpy 2D矩阵数组:
mat = np.array([[1, 3], [2, 5]]) # numpy matrix
n = 2 # n
n_largest_mat = np.sort(mat, axis=None)[-n:] # n_largest
tf_n_largest = np.zeros((2,2), dtype=bool) # all false matrix
for x in n_largest_mat:
tf_n_largest = (tf_n_largest) | (mat == x) # true-false
n_largest_elems = mat[tf_n_largest] # true-false indexing
这将产生一个true-false的n_maximum矩阵索引,也可以从矩阵数组中提取n_maximum元素
这将比完整排序更快,这取决于原始数组的大小和选择的大小:
>>> A = np.random.randint(0,10,10)
>>> A
array([5, 1, 5, 5, 2, 3, 2, 4, 1, 0])
>>> B = np.zeros(3, int)
>>> for i in xrange(3):
... idx = np.argmax(A)
... B[i]=idx; A[idx]=0 #something smaller than A.min()
...
>>> B
array([0, 2, 3])
当然,这涉及到对原始数组的篡改。你可以修复(如果需要)通过复制或替换回原始值. ...对你的用例来说,哪个更便宜。
较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作
>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])
>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])
与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:
>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])
以这种方式获得排在前k位的元素需要O(n + k log k)时间。