NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
比较了编码的便捷性和速度
速度对我的需求很重要,所以我测试了这个问题的三个答案。
根据我的具体情况,对这三个答案中的代码进行了修改。
然后我比较了每种方法的速度。
编码智慧:
NPE的回答是最优雅的,也足够快地满足我的需求。 Fred foo的回答需要最多的重构来满足我的需求,但却是最快的。我选择了这个答案,因为尽管它需要更多的工作,但它并不太糟糕,并且具有显著的速度优势。 Off99555的回答是最优雅的,但也是最慢的。
测试和比较的完整代码
import numpy as np
import time
import random
import sys
from operator import itemgetter
from heapq import nlargest
''' Fake Data Setup '''
a1 = list(range(1000000))
random.shuffle(a1)
a1 = np.array(a1)
''' ################################################ '''
''' NPE's Answer Modified A Bit For My Case '''
t0 = time.time()
indices = np.flip(np.argsort(a1))[:5]
results = []
for index in indices:
results.append((index, a1[index]))
t1 = time.time()
print("NPE's Answer:")
print(results)
print(t1 - t0)
print()
''' Fred Foos Answer Modified A Bit For My Case'''
t0 = time.time()
indices = np.argpartition(a1, -6)[-5:]
results = []
for index in indices:
results.append((a1[index], index))
results.sort(reverse=True)
results = [(b, a) for a, b in results]
t1 = time.time()
print("Fred Foo's Answer:")
print(results)
print(t1 - t0)
print()
''' off99555's Answer - No Modification Needed For My Needs '''
t0 = time.time()
result = nlargest(5, enumerate(a1), itemgetter(1))
t1 = time.time()
print("off99555's Answer:")
print(result)
print(t1 - t0)
输出速度报告
肺水肿的回答是:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.1349949836730957
Fred Foo的回答:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.011161565780639648
off99555的回答是:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.439760684967041
其他回答
我能想到的最简单的是:
>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])
这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。
如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。
比较了编码的便捷性和速度
速度对我的需求很重要,所以我测试了这个问题的三个答案。
根据我的具体情况,对这三个答案中的代码进行了修改。
然后我比较了每种方法的速度。
编码智慧:
NPE的回答是最优雅的,也足够快地满足我的需求。 Fred foo的回答需要最多的重构来满足我的需求,但却是最快的。我选择了这个答案,因为尽管它需要更多的工作,但它并不太糟糕,并且具有显著的速度优势。 Off99555的回答是最优雅的,但也是最慢的。
测试和比较的完整代码
import numpy as np
import time
import random
import sys
from operator import itemgetter
from heapq import nlargest
''' Fake Data Setup '''
a1 = list(range(1000000))
random.shuffle(a1)
a1 = np.array(a1)
''' ################################################ '''
''' NPE's Answer Modified A Bit For My Case '''
t0 = time.time()
indices = np.flip(np.argsort(a1))[:5]
results = []
for index in indices:
results.append((index, a1[index]))
t1 = time.time()
print("NPE's Answer:")
print(results)
print(t1 - t0)
print()
''' Fred Foos Answer Modified A Bit For My Case'''
t0 = time.time()
indices = np.argpartition(a1, -6)[-5:]
results = []
for index in indices:
results.append((a1[index], index))
results.sort(reverse=True)
results = [(b, a) for a, b in results]
t1 = time.time()
print("Fred Foo's Answer:")
print(results)
print(t1 - t0)
print()
''' off99555's Answer - No Modification Needed For My Needs '''
t0 = time.time()
result = nlargest(5, enumerate(a1), itemgetter(1))
t1 = time.time()
print("off99555's Answer:")
print(result)
print(t1 - t0)
输出速度报告
肺水肿的回答是:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.1349949836730957
Fred Foo的回答:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.011161565780639648
off99555的回答是:
[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.439760684967041
如果你碰巧在使用一个多维数组,那么你需要平展和解开索引:
def largest_indices(ary, n):
"""Returns the n largest indices from a numpy array."""
flat = ary.flatten()
indices = np.argpartition(flat, -n)[-n:]
indices = indices[np.argsort(-flat[indices])]
return np.unravel_index(indices, ary.shape)
例如:
>>> xs = np.sin(np.arange(9)).reshape((3, 3))
>>> xs
array([[ 0. , 0.84147098, 0.90929743],
[ 0.14112001, -0.7568025 , -0.95892427],
[-0.2794155 , 0.6569866 , 0.98935825]])
>>> largest_indices(xs, 3)
(array([2, 0, 0]), array([2, 2, 1]))
>>> xs[largest_indices(xs, 3)]
array([ 0.98935825, 0.90929743, 0.84147098])
当top_k<<axis_length时,它优于argsort。
import numpy as np
def get_sorted_top_k(array, top_k=1, axis=-1, reverse=False):
if reverse:
axis_length = array.shape[axis]
partition_index = np.take(np.argpartition(array, kth=-top_k, axis=axis),
range(axis_length - top_k, axis_length), axis)
else:
partition_index = np.take(np.argpartition(array, kth=top_k, axis=axis), range(0, top_k), axis)
top_scores = np.take_along_axis(array, partition_index, axis)
# resort partition
sorted_index = np.argsort(top_scores, axis=axis)
if reverse:
sorted_index = np.flip(sorted_index, axis=axis)
top_sorted_scores = np.take_along_axis(top_scores, sorted_index, axis)
top_sorted_indexes = np.take_along_axis(partition_index, sorted_index, axis)
return top_sorted_scores, top_sorted_indexes
if __name__ == "__main__":
import time
from sklearn.metrics.pairwise import cosine_similarity
x = np.random.rand(10, 128)
y = np.random.rand(1000000, 128)
z = cosine_similarity(x, y)
start_time = time.time()
sorted_index_1 = get_sorted_top_k(z, top_k=3, axis=1, reverse=True)[1]
print(time.time() - start_time)
使用argpartition的向量化2D实现:
k = 3
probas = np.array([
[.6, .1, .15, .15],
[.1, .6, .15, .15],
[.3, .1, .6, 0],
])
k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]
# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster
k_values = probas.flatten()[k_indices_flat]
# k_indices:
# array([[0, 2, 3],
# [1, 2, 3],
# [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
# [0.6 , 0.15, 0.15],
# [0.6 , 0.3 , 0.1 ]])