NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

我能想到的最简单的是:

>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])

这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。

如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。

其他回答

下面是查看最大元素及其位置的一个非常简单的方法。这里轴是定义域;对于2D情况,axis = 0表示列的最大数量,axis = 1表示行的最大数量。对于高维,这取决于你。

M = np.random.random((3, 4))
print(M)
print(M.max(axis=1), M.argmax(axis=1))

较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作

>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])

>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])

与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:

>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])

以这种方式获得排在前k位的元素需要O(n + k log k)时间。

这里有一个更复杂的方法,如果第n个值有联系,则增加n:

>>>> def get_top_n_plus_ties(arr,n):
>>>>     sorted_args = np.argsort(-arr)
>>>>     thresh = arr[sorted_args[n]]
>>>>     n_ = np.sum(arr >= thresh)
>>>>     return sorted_args[:n_]
>>>> get_top_n_plus_ties(np.array([2,9,8,3,0,2,8,3,1,9,5]),3)
array([1, 9, 2, 6])

我能想到的最简单的是:

>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])

这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。

如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。

比较了编码的便捷性和速度

速度对我的需求很重要,所以我测试了这个问题的三个答案。

根据我的具体情况,对这三个答案中的代码进行了修改。

然后我比较了每种方法的速度。

编码智慧:

NPE的回答是最优雅的,也足够快地满足我的需求。 Fred foo的回答需要最多的重构来满足我的需求,但却是最快的。我选择了这个答案,因为尽管它需要更多的工作,但它并不太糟糕,并且具有显著的速度优势。 Off99555的回答是最优雅的,但也是最慢的。

测试和比较的完整代码

import numpy as np
import time
import random
import sys
from operator import itemgetter
from heapq import nlargest

''' Fake Data Setup '''
a1 = list(range(1000000))
random.shuffle(a1)
a1 = np.array(a1)

''' ################################################ '''
''' NPE's Answer Modified A Bit For My Case '''
t0 = time.time()
indices = np.flip(np.argsort(a1))[:5]
results = []
for index in indices:
    results.append((index, a1[index]))
t1 = time.time()
print("NPE's Answer:")
print(results)
print(t1 - t0)
print()

''' Fred Foos Answer Modified A Bit For My Case'''
t0 = time.time()
indices = np.argpartition(a1, -6)[-5:]
results = []
for index in indices:
    results.append((a1[index], index))
results.sort(reverse=True)
results = [(b, a) for a, b in results]
t1 = time.time()
print("Fred Foo's Answer:")
print(results)
print(t1 - t0)
print()

''' off99555's Answer - No Modification Needed For My Needs '''
t0 = time.time()
result = nlargest(5, enumerate(a1), itemgetter(1))
t1 = time.time()
print("off99555's Answer:")
print(result)
print(t1 - t0)

输出速度报告

肺水肿的回答是:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.1349949836730957

Fred Foo的回答:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.011161565780639648

off99555的回答是:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.439760684967041