NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
我能想到的最简单的是:
>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])
这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。
如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。
其他回答
下面是查看最大元素及其位置的一个非常简单的方法。这里轴是定义域;对于2D情况,axis = 0表示列的最大数量,axis = 1表示行的最大数量。对于高维,这取决于你。
M = np.random.random((3, 4))
print(M)
print(M.max(axis=1), M.argmax(axis=1))
我能想到的最简单的是:
>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])
这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。
如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。
较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作
>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])
>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])
与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:
>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])
以这种方式获得排在前k位的元素需要O(n + k log k)时间。
我认为最省时的方法是手动遍历数组并保持k-size的min-heap,正如其他人所提到的那样。
我还想出了一个蛮力方法:
top_k_index_list = [ ]
for i in range(k):
top_k_index_list.append(np.argmax(my_array))
my_array[top_k_index_list[-1]] = -float('inf')
在使用argmax获取其索引后,将最大的元素设置为一个较大的负值。然后argmax的下一次调用将返回第二大的元素。 您可以记录这些元素的原始值,并在需要时恢复它们。
Use:
def max_indices(arr, k):
'''
Returns the indices of the k first largest elements of arr
(in descending order in values)
'''
assert k <= arr.size, 'k should be smaller or equal to the array size'
arr_ = arr.astype(float) # make a copy of arr
max_idxs = []
for _ in range(k):
max_element = np.max(arr_)
if np.isinf(max_element):
break
else:
idx = np.where(arr_ == max_element)
max_idxs.append(idx)
arr_[idx] = -np.inf
return max_idxs
它也适用于2D数组。例如,
In [0]: A = np.array([[ 0.51845014, 0.72528114],
[ 0.88421561, 0.18798661],
[ 0.89832036, 0.19448609],
[ 0.89832036, 0.19448609]])
In [1]: max_indices(A, 8)
Out[1]:
[(array([2, 3], dtype=int64), array([0, 0], dtype=int64)),
(array([1], dtype=int64), array([0], dtype=int64)),
(array([0], dtype=int64), array([1], dtype=int64)),
(array([0], dtype=int64), array([0], dtype=int64)),
(array([2, 3], dtype=int64), array([1, 1], dtype=int64)),
(array([1], dtype=int64), array([1], dtype=int64))]
In [2]: A[max_indices(A, 8)[0]][0]
Out[2]: array([ 0.89832036])