NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

如果你正在处理nan和/或理解np有问题。试试pandas.DataFrame.sort_values。

import numpy as np
import pandas as pd    

a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

df = pd.DataFrame(a, columns=['array'])
max_values = df['array'].sort_values(ascending=False, na_position='last')
ind = max_values[0:3].index.to_list()

这个例子给出了3个最大的非nan值的索引。可能效率很低,但易于阅读和定制。

其他回答

Use:

from operator import itemgetter
from heapq import nlargest
result = nlargest(N, enumerate(your_list), itemgetter(1))

现在,结果列表将包含N个元组(index, value),其中value是最大的。

对于多维数组,可以使用axis关键字,以便沿着预期的轴应用分区。

# For a 2D array
indices = np.argpartition(arr, -N, axis=1)[:, -N:]

对于抓取物品:

x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)

但请注意,这不会返回一个排序的结果。在这种情况下,你可以沿着预期的轴使用np.argsort():

indices = np.argsort(arr, axis=1)[:, -N:]

# Result
x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)

这里有一个例子:

In [42]: a = np.random.randint(0, 20, (10, 10))

In [44]: a
Out[44]:
array([[ 7, 11, 12,  0,  2,  3,  4, 10,  6, 10],
       [16, 16,  4,  3, 18,  5, 10,  4, 14,  9],
       [ 2,  9, 15, 12, 18,  3, 13, 11,  5, 10],
       [14,  0,  9, 11,  1,  4,  9, 19, 18, 12],
       [ 0, 10,  5, 15,  9, 18,  5,  2, 16, 19],
       [14, 19,  3, 11, 13, 11, 13, 11,  1, 14],
       [ 7, 15, 18,  6,  5, 13,  1,  7,  9, 19],
       [11, 17, 11, 16, 14,  3, 16,  1, 12, 19],
       [ 2,  4, 14,  8,  6,  9, 14,  9,  1,  5],
       [ 1, 10, 15,  0,  1,  9, 18,  2,  2, 12]])

In [45]: np.argpartition(a, np.argmin(a, axis=0))[:, 1:] # 1 is because the first item is the minimum one.
Out[45]:
array([[4, 5, 6, 8, 0, 7, 9, 1, 2],
       [2, 7, 5, 9, 6, 8, 1, 0, 4],
       [5, 8, 1, 9, 7, 3, 6, 2, 4],
       [4, 5, 2, 6, 3, 9, 0, 8, 7],
       [7, 2, 6, 4, 1, 3, 8, 5, 9],
       [2, 3, 5, 7, 6, 4, 0, 9, 1],
       [4, 3, 0, 7, 8, 5, 1, 2, 9],
       [5, 2, 0, 8, 4, 6, 3, 1, 9],
       [0, 1, 9, 4, 3, 7, 5, 2, 6],
       [0, 4, 7, 8, 5, 1, 9, 2, 6]])

In [46]: np.argpartition(a, np.argmin(a, axis=0))[:, -3:]
Out[46]:
array([[9, 1, 2],
       [1, 0, 4],
       [6, 2, 4],
       [0, 8, 7],
       [8, 5, 9],
       [0, 9, 1],
       [1, 2, 9],
       [3, 1, 9],
       [5, 2, 6],
       [9, 2, 6]])

In [89]: a[np.repeat(np.arange(x), 3), ind.ravel()].reshape(x, 3)
Out[89]:
array([[10, 11, 12],
       [16, 16, 18],
       [13, 15, 18],
       [14, 18, 19],
       [16, 18, 19],
       [14, 14, 19],
       [15, 18, 19],
       [16, 17, 19],
       [ 9, 14, 14],
       [12, 15, 18]])

这段代码适用于numpy 2D矩阵数组:

mat = np.array([[1, 3], [2, 5]]) # numpy matrix
 
n = 2  # n
n_largest_mat = np.sort(mat, axis=None)[-n:] # n_largest 
tf_n_largest = np.zeros((2,2), dtype=bool) # all false matrix
for x in n_largest_mat: 
  tf_n_largest = (tf_n_largest) | (mat == x) # true-false  

n_largest_elems = mat[tf_n_largest] # true-false indexing 

这将产生一个true-false的n_maximum矩阵索引,也可以从矩阵数组中提取n_maximum元素

如果你不关心第k大元素的顺序,你可以使用argpartition,它应该比通过argsort进行完整排序执行得更好。

K = 4 # We want the indices of the four largest values
a = np.array([0, 8, 0, 4, 5, 8, 8, 0, 4, 2])
np.argpartition(a,-K)[-K:]
array([4, 1, 5, 6])

这个问题值得肯定。

我运行了一些测试,看起来随着数组的大小和K值的增加,argpartition的性能优于argsort。

较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作

>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])

>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])

与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:

>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])

以这种方式获得排在前k位的元素需要O(n + k log k)时间。