NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

方法np。Argpartition只返回k个最大的索引,执行局部排序,比np快。当数组相当大时,Argsort(执行完全排序)。但是返回的索引不是升序或降序。让我们举个例子:

我们可以看到如果你想要一个严格的升序前k个指标,np。Argpartition不会返回你想要的。

除了在np后手动进行排序。argpartition,我的解决方案是使用PyTorch, torch。topk,一个神经网络构建工具,提供numpy类api,同时支持CPU和GPU。它和NumPy的MKL一样快,如果你需要大型矩阵/向量计算,它还提供了GPU的提升。

严格的上升/下降上k指数代码将是:

注意那个火炬。topk接受一个torch张量,并返回torch. tensor类型的topk值和topk索引。与np、torch类似。Topk还接受轴参数,以便处理多维数组/张量。

其他回答

Use:

from operator import itemgetter
from heapq import nlargest
result = nlargest(N, enumerate(your_list), itemgetter(1))

现在,结果列表将包含N个元组(index, value),其中value是最大的。

比较了编码的便捷性和速度

速度对我的需求很重要,所以我测试了这个问题的三个答案。

根据我的具体情况,对这三个答案中的代码进行了修改。

然后我比较了每种方法的速度。

编码智慧:

NPE的回答是最优雅的,也足够快地满足我的需求。 Fred foo的回答需要最多的重构来满足我的需求,但却是最快的。我选择了这个答案,因为尽管它需要更多的工作,但它并不太糟糕,并且具有显著的速度优势。 Off99555的回答是最优雅的,但也是最慢的。

测试和比较的完整代码

import numpy as np
import time
import random
import sys
from operator import itemgetter
from heapq import nlargest

''' Fake Data Setup '''
a1 = list(range(1000000))
random.shuffle(a1)
a1 = np.array(a1)

''' ################################################ '''
''' NPE's Answer Modified A Bit For My Case '''
t0 = time.time()
indices = np.flip(np.argsort(a1))[:5]
results = []
for index in indices:
    results.append((index, a1[index]))
t1 = time.time()
print("NPE's Answer:")
print(results)
print(t1 - t0)
print()

''' Fred Foos Answer Modified A Bit For My Case'''
t0 = time.time()
indices = np.argpartition(a1, -6)[-5:]
results = []
for index in indices:
    results.append((a1[index], index))
results.sort(reverse=True)
results = [(b, a) for a, b in results]
t1 = time.time()
print("Fred Foo's Answer:")
print(results)
print(t1 - t0)
print()

''' off99555's Answer - No Modification Needed For My Needs '''
t0 = time.time()
result = nlargest(5, enumerate(a1), itemgetter(1))
t1 = time.time()
print("off99555's Answer:")
print(result)
print(t1 - t0)

输出速度报告

肺水肿的回答是:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.1349949836730957

Fred Foo的回答:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.011161565780639648

off99555的回答是:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.439760684967041

对于多维数组,可以使用axis关键字,以便沿着预期的轴应用分区。

# For a 2D array
indices = np.argpartition(arr, -N, axis=1)[:, -N:]

对于抓取物品:

x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)

但请注意,这不会返回一个排序的结果。在这种情况下,你可以沿着预期的轴使用np.argsort():

indices = np.argsort(arr, axis=1)[:, -N:]

# Result
x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)

这里有一个例子:

In [42]: a = np.random.randint(0, 20, (10, 10))

In [44]: a
Out[44]:
array([[ 7, 11, 12,  0,  2,  3,  4, 10,  6, 10],
       [16, 16,  4,  3, 18,  5, 10,  4, 14,  9],
       [ 2,  9, 15, 12, 18,  3, 13, 11,  5, 10],
       [14,  0,  9, 11,  1,  4,  9, 19, 18, 12],
       [ 0, 10,  5, 15,  9, 18,  5,  2, 16, 19],
       [14, 19,  3, 11, 13, 11, 13, 11,  1, 14],
       [ 7, 15, 18,  6,  5, 13,  1,  7,  9, 19],
       [11, 17, 11, 16, 14,  3, 16,  1, 12, 19],
       [ 2,  4, 14,  8,  6,  9, 14,  9,  1,  5],
       [ 1, 10, 15,  0,  1,  9, 18,  2,  2, 12]])

In [45]: np.argpartition(a, np.argmin(a, axis=0))[:, 1:] # 1 is because the first item is the minimum one.
Out[45]:
array([[4, 5, 6, 8, 0, 7, 9, 1, 2],
       [2, 7, 5, 9, 6, 8, 1, 0, 4],
       [5, 8, 1, 9, 7, 3, 6, 2, 4],
       [4, 5, 2, 6, 3, 9, 0, 8, 7],
       [7, 2, 6, 4, 1, 3, 8, 5, 9],
       [2, 3, 5, 7, 6, 4, 0, 9, 1],
       [4, 3, 0, 7, 8, 5, 1, 2, 9],
       [5, 2, 0, 8, 4, 6, 3, 1, 9],
       [0, 1, 9, 4, 3, 7, 5, 2, 6],
       [0, 4, 7, 8, 5, 1, 9, 2, 6]])

In [46]: np.argpartition(a, np.argmin(a, axis=0))[:, -3:]
Out[46]:
array([[9, 1, 2],
       [1, 0, 4],
       [6, 2, 4],
       [0, 8, 7],
       [8, 5, 9],
       [0, 9, 1],
       [1, 2, 9],
       [3, 1, 9],
       [5, 2, 6],
       [9, 2, 6]])

In [89]: a[np.repeat(np.arange(x), 3), ind.ravel()].reshape(x, 3)
Out[89]:
array([[10, 11, 12],
       [16, 16, 18],
       [13, 15, 18],
       [14, 18, 19],
       [16, 18, 19],
       [14, 14, 19],
       [15, 18, 19],
       [16, 17, 19],
       [ 9, 14, 14],
       [12, 15, 18]])

较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作

>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])

>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])

与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:

>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])

以这种方式获得排在前k位的元素需要O(n + k log k)时间。

使用argpartition的向量化2D实现:

k = 3
probas = np.array([
    [.6, .1, .15, .15],
    [.1, .6, .15, .15],
    [.3, .1, .6, 0],
])

k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]

# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster

k_values = probas.flatten()[k_indices_flat]

# k_indices:
# array([[0, 2, 3],
#        [1, 2, 3],
#        [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
#        [0.6 , 0.15, 0.15],
#       [0.6 , 0.3 , 0.1 ]])