NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

方法np。Argpartition只返回k个最大的索引,执行局部排序,比np快。当数组相当大时,Argsort(执行完全排序)。但是返回的索引不是升序或降序。让我们举个例子:

我们可以看到如果你想要一个严格的升序前k个指标,np。Argpartition不会返回你想要的。

除了在np后手动进行排序。argpartition,我的解决方案是使用PyTorch, torch。topk,一个神经网络构建工具,提供numpy类api,同时支持CPU和GPU。它和NumPy的MKL一样快,如果你需要大型矩阵/向量计算,它还提供了GPU的提升。

严格的上升/下降上k指数代码将是:

注意那个火炬。topk接受一个torch张量,并返回torch. tensor类型的topk值和topk索引。与np、torch类似。Topk还接受轴参数,以便处理多维数组/张量。

其他回答

简单的:

idx = (-arr).argsort()[:n]

其中n为最大值的个数。

我认为最省时的方法是手动遍历数组并保持k-size的min-heap,正如其他人所提到的那样。

我还想出了一个蛮力方法:

top_k_index_list = [ ]
for i in range(k):
    top_k_index_list.append(np.argmax(my_array))
    my_array[top_k_index_list[-1]] = -float('inf')

在使用argmax获取其索引后,将最大的元素设置为一个较大的负值。然后argmax的下一次调用将返回第二大的元素。 您可以记录这些元素的原始值,并在需要时恢复它们。

如果你不关心第k大元素的顺序,你可以使用argpartition,它应该比通过argsort进行完整排序执行得更好。

K = 4 # We want the indices of the four largest values
a = np.array([0, 8, 0, 4, 5, 8, 8, 0, 4, 2])
np.argpartition(a,-K)[-K:]
array([4, 1, 5, 6])

这个问题值得肯定。

我运行了一些测试,看起来随着数组的大小和K值的增加,argpartition的性能优于argsort。

Use:

from operator import itemgetter
from heapq import nlargest
result = nlargest(N, enumerate(your_list), itemgetter(1))

现在,结果列表将包含N个元组(index, value),其中value是最大的。

我发现最直观的方法是使用np.unique。

其思想是,唯一方法返回输入值的索引。然后根据最大唯一值和索引,重新创建原始值的位置。

multi_max = [1,1,2,2,4,0,0,4]
uniques, idx = np.unique(multi_max, return_inverse=True)
print np.squeeze(np.argwhere(idx == np.argmax(uniques)))
>> [4 7]