我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。

我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。


当前回答

lambda lst: reduce(lambda a,b:(b,b==a[0] and a[1]), lst, (lst[0], True))[1]

下一个会短路:

all(itertools.imap(lambda i:yourlist[i]==yourlist[i+1], xrange(len(yourlist)-1)))

其他回答

您可以使用.nunique()来查找列表中唯一项的数量。

def identical_elements(list):
    series = pd.Series(list)
    if series.nunique() == 1: identical = True
    else:  identical = False
    return identical



identical_elements(['a', 'a'])
Out[427]: True

identical_elements(['a', 'b'])
Out[428]: False

最佳答案

Twitter上有一个不错的帖子,介绍了实现all_equal()函数的各种方法。

给定一个列表输入,最好的提交是:

 t.count(t[0]) == len(t)  

其他方法

下面是线程的结果:

Have groupby() compare adjacent entries. This has an early-out for a mismatch, does not use extra memory, and it runs at C speed. g = itertools.groupby(s) next(g, True) and not next(g, False) Compare two slices offset from one another by one position. This uses extra memory but runs at C speed. s[1:] == s[:-1] Iterator version of slice comparison. It runs at C speed and does not use extra memory; however, the eq calls are expensive. all(map(operator.eq, s, itertools.islice(s, 1, None))) Compare the lowest and highest values. This runs at C speed, doesn't use extra memory, but does cost two inequality tests per datum. min(s) == max(s) # s must be non-empty Build a set. This runs at C speed and uses little extra memory but requires hashability and does not have an early-out. len(set(t))==1. At great cost, this handles NaNs and other objects with exotic equality relations. all(itertools.starmap(eq, itertools.product(s, repeat=2))) Pull out the first element and compare all the others to it, stopping at the first mismatch. Only disadvantage is that this doesn't run at C speed. it = iter(s) a = next(it, None) return all(a == b for b in it) Just count the first element. This is fast, simple, elegant. It runs at C speed, requires no additional memory, uses only equality tests, and makes only a single pass over the data. t.count(t[0]) == len(t)

比使用set()处理序列(而不是可迭代对象)更快的解决方案是简单地计算第一个元素。这假设列表是非空的(但这是微不足道的检查,并决定什么结果应该在一个空列表)

x.count(x[0]) == len(x)

一些简单的基准:

>>> timeit.timeit('len(set(s1))<=1', 's1=[1]*5000', number=10000)
1.4383411407470703
>>> timeit.timeit('len(set(s1))<=1', 's1=[1]*4999+[2]', number=10000)
1.4765670299530029
>>> timeit.timeit('s1.count(s1[0])==len(s1)', 's1=[1]*5000', number=10000)
0.26274609565734863
>>> timeit.timeit('s1.count(s1[0])==len(s1)', 's1=[1]*4999+[2]', number=10000)
0.25654196739196777

还有一个纯Python递归选项:

def checkEqual(lst):
    if len(lst)==2 :
        return lst[0]==lst[1]
    else:
        return lst[0]==lst[1] and checkEqual(lst[1:])

然而,由于某些原因,它在某些情况下比其他选项慢两个数量级。从C语言的角度来看,我希望这更快,但事实并非如此!

另一个缺点是Python中有递归限制,在这种情况下需要进行调整。比如用这个。

这是另一个选项,对于长列表,比len(set(x))==1快(使用短路)

def constantList(x):
    return x and [x[0]]*len(x) == x