我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。

我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。


当前回答

我怀疑这是“最python化的”,但类似于:

>>> falseList = [1,2,3,4]
>>> trueList = [1, 1, 1]
>>> 
>>> def testList(list):
...   for item in list[1:]:
...     if item != list[0]:
...       return False
...   return True
... 
>>> testList(falseList)
False
>>> testList(trueList)
True

会成功的。

其他回答

[编辑:这个答案针对当前投票最多的itertools。Groupby(这是一个很好的答案)稍后回答。

在不重写程序的情况下,最具渐近性能和可读性的方法如下:

all(x==myList[0] for x in myList)

(是的,这甚至适用于空列表!这是因为这是python具有惰性语义的少数情况之一。)

这将在尽可能早的时间失败,因此它是渐近最优的(期望时间大约是O(#惟一)而不是O(N),但最坏情况时间仍然是O(N))。这是假设你之前没有看过这些数据……

(如果你关心性能,但不太关心性能,你可以先做通常的标准优化,比如将myList[0]常量从循环中提升出来,并为边缘情况添加笨拙的逻辑,尽管这是python编译器最终可能会学会如何做的事情,因此除非绝对必要,否则不应该这样做,因为它会破坏最小收益的可读性。)

如果你更关心性能,这是上面速度的两倍,但有点啰嗦:

def allEqual(iterable):
    iterator = iter(iterable)
    
    try:
        firstItem = next(iterator)
    except StopIteration:
        return True
        
    for x in iterator:
        if x!=firstItem:
            return False
    return True

如果你更关心性能(但还不足以重写你的程序),请使用当前投票最多的itertools。它的速度是allEqual的两倍,因为它可能是优化的C代码。(根据文档,它应该(类似于这个答案)没有任何内存开销,因为惰性生成器永远不会被计算到列表中…这可能会让人担心,但伪代码表明,分组的“列表”实际上是惰性生成器。)

如果你更关心性能,请继续阅读…


关于性能的旁注,因为其他答案都在谈论它,因为一些未知的原因:

... if you have seen the data before and are likely using a collection data structure of some sort, and you really care about performance, you can get .isAllEqual() for free O(1) by augmenting your structure with a Counter that is updated with every insert/delete/etc. operation and just checking if it's of the form {something:someCount} i.e. len(counter.keys())==1; alternatively you can keep a Counter on the side in a separate variable. This is provably better than anything else up to constant factor. Perhaps you can also use python's FFI with ctypes with your chosen method, and perhaps with a heuristic (like if it's a sequence with getitem, then checking first element, last element, then elements in-order).

当然,可读性也有好处。

>>> a = [1, 2, 3, 4, 5, 6]
>>> z = [(a[x], a[x+1]) for x in range(0, len(a)-1)]
>>> z
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
# Replacing it with the test
>>> z = [(a[x] == a[x+1]) for x in range(0, len(a)-1)]
>>> z
[False, False, False, False, False]
>>> if False in z : Print "All elements are not equal"

这是另一个选项,对于长列表,比len(set(x))==1快(使用短路)

def constantList(x):
    return x and [x[0]]*len(x) == x

您可以使用.nunique()来查找列表中唯一项的数量。

def identical_elements(list):
    series = pd.Series(list)
    if series.nunique() == 1: identical = True
    else:  identical = False
    return identical



identical_elements(['a', 'a'])
Out[427]: True

identical_elements(['a', 'b'])
Out[428]: False

使用itertools的更多版本。groupby,我发现它比原来的更清晰(下面有更多关于它的信息):

def all_equal(iterable):
    g = groupby(iterable)
    return not any(g) or not any(g)

def all_equal(iterable):
    g = groupby(iterable)
    next(g, None)
    return not next(g, False)

def all_equal(iterable):
    g = groupby(iterable)
    return not next(g, False) or not next(g, False)

以下是来自Itertools Recipes的原始版本:

def all_equal(iterable):
    g = groupby(iterable)
    return next(g, True) and not next(g, False)

注意,下一个(g, True)总是True(它不是一个非空元组就是True)。这意味着它的值不重要。它的执行纯粹是为了推进groupby迭代器。但是在返回表达式中包含它会导致读者认为它的值在那里被使用。因为它没有,我发现这是误导和不必要的复杂。我上面的第二个版本将next(g, True)视为它的实际用途,作为一个我们不关心其值的语句。

我的第三个版本走了一个不同的方向,并使用了第一个next的值(g, False)。如果根本没有第一个组(即,如果给定的可迭代对象为“空”),则该解决方案立即返回结果,甚至不检查是否有第二个组。

我的第一个解决方案基本上和第三个一样,只是使用任何一个。两种解决方案都读作“所有元素都是相等的……”没有第一组,也没有第二组。”

基准测试结果(虽然速度并不是我在这里的重点,但清晰才是重点,在实践中,如果有许多相等的值,大多数时间可能由组自己花费,减少了这些差异的影响):

Python 3.10.4 on my Windows laptop:

iterable = ()
 914 ns   914 ns   916 ns  use_first_any
 917 ns   925 ns   925 ns  use_first_next
1074 ns  1075 ns  1075 ns  next_as_statement
1081 ns  1083 ns  1084 ns  original

iterable = (1,)
1290 ns  1290 ns  1291 ns  next_as_statement
1303 ns  1307 ns  1307 ns  use_first_next
1306 ns  1307 ns  1309 ns  use_first_any
1318 ns  1319 ns  1320 ns  original

iterable = (1, 2)
1463 ns  1464 ns  1467 ns  use_first_any
1463 ns  1463 ns  1467 ns  next_as_statement
1477 ns  1479 ns  1481 ns  use_first_next
1487 ns  1489 ns  1492 ns  original
Python 3.10.4 on a Debian Google Compute Engine instance:

iterable = ()
 234 ns   234 ns   234 ns  use_first_any
 234 ns   235 ns   235 ns  use_first_next
 264 ns   264 ns   264 ns  next_as_statement
 265 ns   265 ns   265 ns  original

iterable = (1,)
 308 ns   308 ns   308 ns  next_as_statement
 315 ns   315 ns   315 ns  original
 316 ns   316 ns   317 ns  use_first_any
 317 ns   317 ns   317 ns  use_first_next

iterable = (1, 2)
 361 ns   361 ns   361 ns  next_as_statement
 367 ns   367 ns   367 ns  original
 384 ns   385 ns   385 ns  use_first_next
 386 ns   387 ns   387 ns  use_first_any

基准测试代码:

from timeit import timeit
from random import shuffle
from bisect import insort
from itertools import groupby

def original(iterable):
    g = groupby(iterable)
    return next(g, True) and not next(g, False)

def use_first_any(iterable):
    g = groupby(iterable)
    return not any(g) or not any(g)

def next_as_statement(iterable):
    g = groupby(iterable)
    next(g, None)
    return not next(g, False)

def use_first_next(iterable):
    g = groupby(iterable)
    return not next(g, False) or not next(g, False)

funcs = [original, use_first_any, next_as_statement, use_first_next]

for iterable in (), (1,), (1, 2):
    print(f'{iterable = }')
    times = {func: [] for func in funcs}
    for _ in range(1000):
        shuffle(funcs)
        for func in funcs:
            number = 1000
            t = timeit(lambda: func(iterable), number=number) / number
            insort(times[func], t)
    for func in sorted(funcs, key=times.get):
        print(*('%4d ns ' % round(t * 1e9) for t in times[func][:3]), func.__name__)
    print()