我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。
我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。
我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。
我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。
当前回答
也许我低估了问题的严重性?检查列表中唯一值的长度。
lzt = [1,1,1,1,1,2]
if (len(set(lzt)) > 1):
uniform = False
elif (len(set(lzt)) == 1):
uniform = True
elif (not lzt):
raise ValueError("List empty, get wrecked")
其他回答
最佳答案
Twitter上有一个不错的帖子,介绍了实现all_equal()函数的各种方法。
给定一个列表输入,最好的提交是:
t.count(t[0]) == len(t)
其他方法
下面是线程的结果:
Have groupby() compare adjacent entries. This has an early-out for a mismatch, does not use extra memory, and it runs at C speed. g = itertools.groupby(s) next(g, True) and not next(g, False) Compare two slices offset from one another by one position. This uses extra memory but runs at C speed. s[1:] == s[:-1] Iterator version of slice comparison. It runs at C speed and does not use extra memory; however, the eq calls are expensive. all(map(operator.eq, s, itertools.islice(s, 1, None))) Compare the lowest and highest values. This runs at C speed, doesn't use extra memory, but does cost two inequality tests per datum. min(s) == max(s) # s must be non-empty Build a set. This runs at C speed and uses little extra memory but requires hashability and does not have an early-out. len(set(t))==1. At great cost, this handles NaNs and other objects with exotic equality relations. all(itertools.starmap(eq, itertools.product(s, repeat=2))) Pull out the first element and compare all the others to it, stopping at the first mismatch. Only disadvantage is that this doesn't run at C speed. it = iter(s) a = next(it, None) return all(a == b for b in it) Just count the first element. This is fast, simple, elegant. It runs at C speed, requires no additional memory, uses only equality tests, and makes only a single pass over the data. t.count(t[0]) == len(t)
或者使用numpy的diff方法:
import numpy as np
def allthesame(l):
return np.unique(l).shape[0]<=1
并呼吁:
print(allthesame([1,1,1]))
输出:
True
使用itertools的更多版本。groupby,我发现它比原来的更清晰(下面有更多关于它的信息):
def all_equal(iterable):
g = groupby(iterable)
return not any(g) or not any(g)
def all_equal(iterable):
g = groupby(iterable)
next(g, None)
return not next(g, False)
def all_equal(iterable):
g = groupby(iterable)
return not next(g, False) or not next(g, False)
以下是来自Itertools Recipes的原始版本:
def all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
注意,下一个(g, True)总是True(它不是一个非空元组就是True)。这意味着它的值不重要。它的执行纯粹是为了推进groupby迭代器。但是在返回表达式中包含它会导致读者认为它的值在那里被使用。因为它没有,我发现这是误导和不必要的复杂。我上面的第二个版本将next(g, True)视为它的实际用途,作为一个我们不关心其值的语句。
我的第三个版本走了一个不同的方向,并使用了第一个next的值(g, False)。如果根本没有第一个组(即,如果给定的可迭代对象为“空”),则该解决方案立即返回结果,甚至不检查是否有第二个组。
我的第一个解决方案基本上和第三个一样,只是使用任何一个。两种解决方案都读作“所有元素都是相等的……”没有第一组,也没有第二组。”
基准测试结果(虽然速度并不是我在这里的重点,但清晰才是重点,在实践中,如果有许多相等的值,大多数时间可能由组自己花费,减少了这些差异的影响):
Python 3.10.4 on my Windows laptop:
iterable = ()
914 ns 914 ns 916 ns use_first_any
917 ns 925 ns 925 ns use_first_next
1074 ns 1075 ns 1075 ns next_as_statement
1081 ns 1083 ns 1084 ns original
iterable = (1,)
1290 ns 1290 ns 1291 ns next_as_statement
1303 ns 1307 ns 1307 ns use_first_next
1306 ns 1307 ns 1309 ns use_first_any
1318 ns 1319 ns 1320 ns original
iterable = (1, 2)
1463 ns 1464 ns 1467 ns use_first_any
1463 ns 1463 ns 1467 ns next_as_statement
1477 ns 1479 ns 1481 ns use_first_next
1487 ns 1489 ns 1492 ns original
Python 3.10.4 on a Debian Google Compute Engine instance:
iterable = ()
234 ns 234 ns 234 ns use_first_any
234 ns 235 ns 235 ns use_first_next
264 ns 264 ns 264 ns next_as_statement
265 ns 265 ns 265 ns original
iterable = (1,)
308 ns 308 ns 308 ns next_as_statement
315 ns 315 ns 315 ns original
316 ns 316 ns 317 ns use_first_any
317 ns 317 ns 317 ns use_first_next
iterable = (1, 2)
361 ns 361 ns 361 ns next_as_statement
367 ns 367 ns 367 ns original
384 ns 385 ns 385 ns use_first_next
386 ns 387 ns 387 ns use_first_any
基准测试代码:
from timeit import timeit
from random import shuffle
from bisect import insort
from itertools import groupby
def original(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
def use_first_any(iterable):
g = groupby(iterable)
return not any(g) or not any(g)
def next_as_statement(iterable):
g = groupby(iterable)
next(g, None)
return not next(g, False)
def use_first_next(iterable):
g = groupby(iterable)
return not next(g, False) or not next(g, False)
funcs = [original, use_first_any, next_as_statement, use_first_next]
for iterable in (), (1,), (1, 2):
print(f'{iterable = }')
times = {func: [] for func in funcs}
for _ in range(1000):
shuffle(funcs)
for func in funcs:
number = 1000
t = timeit(lambda: func(iterable), number=number) / number
insort(times[func], t)
for func in sorted(funcs, key=times.get):
print(*('%4d ns ' % round(t * 1e9) for t in times[func][:3]), func.__name__)
print()
将您的输入转换为一个集:
len(set(the_list)) <= 1
使用set可以删除所有重复的元素。<= 1使它在输入为空时正确地返回True。
这要求输入中的所有元素都是可哈希的。例如,如果传入一个列表的列表,就会得到一个TypeError。
def allTheSame(i):
j = itertools.groupby(i)
for k in j: break
for k in j: return False
return True
适用于Python 2.4,它没有“all”。