我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。
我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。
我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。
我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。
当前回答
[编辑:这个答案针对当前投票最多的itertools。Groupby(这是一个很好的答案)稍后回答。
在不重写程序的情况下,最具渐近性能和可读性的方法如下:
all(x==myList[0] for x in myList)
(是的,这甚至适用于空列表!这是因为这是python具有惰性语义的少数情况之一。)
这将在尽可能早的时间失败,因此它是渐近最优的(期望时间大约是O(#惟一)而不是O(N),但最坏情况时间仍然是O(N))。这是假设你之前没有看过这些数据……
(如果你关心性能,但不太关心性能,你可以先做通常的标准优化,比如将myList[0]常量从循环中提升出来,并为边缘情况添加笨拙的逻辑,尽管这是python编译器最终可能会学会如何做的事情,因此除非绝对必要,否则不应该这样做,因为它会破坏最小收益的可读性。)
如果你更关心性能,这是上面速度的两倍,但有点啰嗦:
def allEqual(iterable):
iterator = iter(iterable)
try:
firstItem = next(iterator)
except StopIteration:
return True
for x in iterator:
if x!=firstItem:
return False
return True
如果你更关心性能(但还不足以重写你的程序),请使用当前投票最多的itertools。它的速度是allEqual的两倍,因为它可能是优化的C代码。(根据文档,它应该(类似于这个答案)没有任何内存开销,因为惰性生成器永远不会被计算到列表中…这可能会让人担心,但伪代码表明,分组的“列表”实际上是惰性生成器。)
如果你更关心性能,请继续阅读…
关于性能的旁注,因为其他答案都在谈论它,因为一些未知的原因:
... if you have seen the data before and are likely using a collection data structure of some sort, and you really care about performance, you can get .isAllEqual() for free O(1) by augmenting your structure with a Counter that is updated with every insert/delete/etc. operation and just checking if it's of the form {something:someCount} i.e. len(counter.keys())==1; alternatively you can keep a Counter on the side in a separate variable. This is provably better than anything else up to constant factor. Perhaps you can also use python's FFI with ctypes with your chosen method, and perhaps with a heuristic (like if it's a sequence with getitem, then checking first element, last element, then elements in-order).
当然,可读性也有好处。
其他回答
def allTheSame(i):
j = itertools.groupby(i)
for k in j: break
for k in j: return False
return True
适用于Python 2.4,它没有“all”。
最佳答案
Twitter上有一个不错的帖子,介绍了实现all_equal()函数的各种方法。
给定一个列表输入,最好的提交是:
t.count(t[0]) == len(t)
其他方法
下面是线程的结果:
Have groupby() compare adjacent entries. This has an early-out for a mismatch, does not use extra memory, and it runs at C speed. g = itertools.groupby(s) next(g, True) and not next(g, False) Compare two slices offset from one another by one position. This uses extra memory but runs at C speed. s[1:] == s[:-1] Iterator version of slice comparison. It runs at C speed and does not use extra memory; however, the eq calls are expensive. all(map(operator.eq, s, itertools.islice(s, 1, None))) Compare the lowest and highest values. This runs at C speed, doesn't use extra memory, but does cost two inequality tests per datum. min(s) == max(s) # s must be non-empty Build a set. This runs at C speed and uses little extra memory but requires hashability and does not have an early-out. len(set(t))==1. At great cost, this handles NaNs and other objects with exotic equality relations. all(itertools.starmap(eq, itertools.product(s, repeat=2))) Pull out the first element and compare all the others to it, stopping at the first mismatch. Only disadvantage is that this doesn't run at C speed. it = iter(s) a = next(it, None) return all(a == b for b in it) Just count the first element. This is fast, simple, elegant. It runs at C speed, requires no additional memory, uses only equality tests, and makes only a single pass over the data. t.count(t[0]) == len(t)
不管怎样,这是最近在python想法邮件列表中出现的。事实证明,已经有一个itertools配方可以做到这一点
def all_equal(iterable):
"Returns True if all the elements are equal to each other"
g = groupby(iterable)
return next(g, True) and not next(g, False)
据说它的性能非常好,有一些不错的属性。
短路:一旦发现第一个不相等的项,它就会停止从可迭代对象中消费项目。 不要求项是可哈希的。 它是懒惰的,只需要O(1)个额外的内存来进行检查。
换句话说,我不能把提出这个解决方案的功劳占为己有,甚至我也不能把找到它的功劳占为己有。
可以使用map和lambda吗
lst = [1,1,1,1,1,1,1,1,1]
print all(map(lambda x: x == lst[0], lst[1:]))
>>> a = [1, 2, 3, 4, 5, 6]
>>> z = [(a[x], a[x+1]) for x in range(0, len(a)-1)]
>>> z
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
# Replacing it with the test
>>> z = [(a[x] == a[x+1]) for x in range(0, len(a)-1)]
>>> z
[False, False, False, False, False]
>>> if False in z : Print "All elements are not equal"