我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。
我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp
我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。
我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。
我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp
我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。
当前回答
我需要一个易于使用的c++库来解析CSV文件,但找不到任何可用的库,所以我最终构建了一个。 Rapidcsv是一个c++ 11的纯头库,它可以直接访问已解析的列(或行),作为选择的数据类型的向量。例如:
#include <iostream>
#include <vector>
#include <rapidcsv.h>
int main()
{
rapidcsv::Document doc("../tests/msft.csv");
std::vector<float> close = doc.GetColumn<float>("Close");
std::cout << "Read " << close.size() << " values." << std::endl;
}
其他回答
当你使用boost::spirit这样漂亮的东西时,你应该感到自豪
这里我的一个解析器的尝试(几乎)符合这个链接的CSV规范(我不需要在字段中换行)。逗号周围的空格也被省略了)。
在你克服了编译这段代码需要等待10秒的令人震惊的经历之后:),你就可以坐下来享受了。
// csvparser.cpp
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <iostream>
#include <string>
namespace qi = boost::spirit::qi;
namespace bascii = boost::spirit::ascii;
template <typename Iterator>
struct csv_parser : qi::grammar<Iterator, std::vector<std::string>(),
bascii::space_type>
{
qi::rule<Iterator, char() > COMMA;
qi::rule<Iterator, char() > DDQUOTE;
qi::rule<Iterator, std::string(), bascii::space_type > non_escaped;
qi::rule<Iterator, std::string(), bascii::space_type > escaped;
qi::rule<Iterator, std::string(), bascii::space_type > field;
qi::rule<Iterator, std::vector<std::string>(), bascii::space_type > start;
csv_parser() : csv_parser::base_type(start)
{
using namespace qi;
using qi::lit;
using qi::lexeme;
using bascii::char_;
start = field % ',';
field = escaped | non_escaped;
escaped = lexeme['"' >> *( char_ -(char_('"') | ',') | COMMA | DDQUOTE) >> '"'];
non_escaped = lexeme[ *( char_ -(char_('"') | ',') ) ];
DDQUOTE = lit("\"\"") [_val = '"'];
COMMA = lit(",") [_val = ','];
}
};
int main()
{
std::cout << "Enter CSV lines [empty] to quit\n";
using bascii::space;
typedef std::string::const_iterator iterator_type;
typedef csv_parser<iterator_type> csv_parser;
csv_parser grammar;
std::string str;
int fid;
while (getline(std::cin, str))
{
fid = 0;
if (str.empty())
break;
std::vector<std::string> csv;
std::string::const_iterator it_beg = str.begin();
std::string::const_iterator it_end = str.end();
bool r = phrase_parse(it_beg, it_end, grammar, space, csv);
if (r && it_beg == it_end)
{
std::cout << "Parsing succeeded\n";
for (auto& field: csv)
{
std::cout << "field " << ++fid << ": " << field << std::endl;
}
}
else
{
std::cout << "Parsing failed\n";
}
}
return 0;
}
编译:
make csvparser
测试(例子摘自维基百科):
./csvparser
Enter CSV lines [empty] to quit
1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00
Parsing succeeded
field 1: 1999
field 2: Chevy
field 3: Venture "Extended Edition, Very Large"
field 4:
field 5: 5000.00
1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00"
Parsing failed
由于所有CSV问题似乎都被重定向到这里,我想我应该在这里发布我的答案。这个回答并没有直接回答提问者的问题。我希望能够读取已知的CSV格式的流,而且每个字段的类型都已经知道。当然,可以使用下面的方法将每个字段处理为字符串类型。
作为我希望能够使用CSV输入流的一个例子,考虑以下输入(取自维基百科的CSV页面):
const char input[] =
"Year,Make,Model,Description,Price\n"
"1997,Ford,E350,\"ac, abs, moon\",3000.00\n"
"1999,Chevy,\"Venture \"\"Extended Edition\"\"\",\"\",4900.00\n"
"1999,Chevy,\"Venture \"\"Extended Edition, Very Large\"\"\",\"\",5000.00\n"
"1996,Jeep,Grand Cherokee,\"MUST SELL!\n\
air, moon roof, loaded\",4799.00\n"
;
然后,我希望能够像这样读取数据:
std::istringstream ss(input);
std::string title[5];
int year;
std::string make, model, desc;
float price;
csv_istream(ss)
>> title[0] >> title[1] >> title[2] >> title[3] >> title[4];
while (csv_istream(ss)
>> year >> make >> model >> desc >> price) {
//...do something with the record...
}
这就是我最后得到的解。
struct csv_istream {
std::istream &is_;
csv_istream (std::istream &is) : is_(is) {}
void scan_ws () const {
while (is_.good()) {
int c = is_.peek();
if (c != ' ' && c != '\t') break;
is_.get();
}
}
void scan (std::string *s = 0) const {
std::string ws;
int c = is_.get();
if (is_.good()) {
do {
if (c == ',' || c == '\n') break;
if (s) {
ws += c;
if (c != ' ' && c != '\t') {
*s += ws;
ws.clear();
}
}
c = is_.get();
} while (is_.good());
if (is_.eof()) is_.clear();
}
}
template <typename T, bool> struct set_value {
void operator () (std::string in, T &v) const {
std::istringstream(in) >> v;
}
};
template <typename T> struct set_value<T, true> {
template <bool SIGNED> void convert (std::string in, T &v) const {
if (SIGNED) v = ::strtoll(in.c_str(), 0, 0);
else v = ::strtoull(in.c_str(), 0, 0);
}
void operator () (std::string in, T &v) const {
convert<is_signed_int<T>::val>(in, v);
}
};
template <typename T> const csv_istream & operator >> (T &v) const {
std::string tmp;
scan(&tmp);
set_value<T, is_int<T>::val>()(tmp, v);
return *this;
}
const csv_istream & operator >> (std::string &v) const {
v.clear();
scan_ws();
if (is_.peek() != '"') scan(&v);
else {
std::string tmp;
is_.get();
std::getline(is_, tmp, '"');
while (is_.peek() == '"') {
v += tmp;
v += is_.get();
std::getline(is_, tmp, '"');
}
v += tmp;
scan();
}
return *this;
}
template <typename T>
const csv_istream & operator >> (T &(*manip)(T &)) const {
is_ >> manip;
return *this;
}
operator bool () const { return !is_.fail(); }
};
使用以下helper,可以通过c++ 11中的新积分特征模板进行简化:
template <typename T> struct is_signed_int { enum { val = false }; };
template <> struct is_signed_int<short> { enum { val = true}; };
template <> struct is_signed_int<int> { enum { val = true}; };
template <> struct is_signed_int<long> { enum { val = true}; };
template <> struct is_signed_int<long long> { enum { val = true}; };
template <typename T> struct is_unsigned_int { enum { val = false }; };
template <> struct is_unsigned_int<unsigned short> { enum { val = true}; };
template <> struct is_unsigned_int<unsigned int> { enum { val = true}; };
template <> struct is_unsigned_int<unsigned long> { enum { val = true}; };
template <> struct is_unsigned_int<unsigned long long> { enum { val = true}; };
template <typename T> struct is_int {
enum { val = (is_signed_int<T>::val || is_unsigned_int<T>::val) };
};
在网上试试!
如果你不想在你的项目中包含boost(如果你只打算使用它来进行CSV解析,它就相当大了……)
我在这里有幸使用CSV解析:
http://www.zedwood.com/article/112/cpp-csv-parser
它处理带引号的字段-但不处理内联\n字符(这可能对大多数用途都很好)。
我写了一个很好的解析CSV文件的方法,我认为我应该把它作为一个答案:
#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
struct CSVDict
{
std::vector< std::string > inputImages;
std::vector< double > inputLabels;
};
/**
\brief Splits the string
\param str String to split
\param delim Delimiter on the basis of which splitting is to be done
\return results Output in the form of vector of strings
*/
std::vector<std::string> stringSplit( const std::string &str, const std::string &delim )
{
std::vector<std::string> results;
for (size_t i = 0; i < str.length(); i++)
{
std::string tempString = "";
while ((str[i] != *delim.c_str()) && (i < str.length()))
{
tempString += str[i];
i++;
}
results.push_back(tempString);
}
return results;
}
/**
\brief Parse the supplied CSV File and obtain Row and Column information.
Assumptions:
1. Header information is in first row
2. Delimiters are only used to differentiate cell members
\param csvFileName The full path of the file to parse
\param inputColumns The string of input columns which contain the data to be used for further processing
\param inputLabels The string of input labels based on which further processing is to be done
\param delim The delimiters used in inputColumns and inputLabels
\return Vector of Vector of strings: Collection of rows and columns
*/
std::vector< CSVDict > parseCSVFile( const std::string &csvFileName, const std::string &inputColumns, const std::string &inputLabels, const std::string &delim )
{
std::vector< CSVDict > return_CSVDict;
std::vector< std::string > inputColumnsVec = stringSplit(inputColumns, delim), inputLabelsVec = stringSplit(inputLabels, delim);
std::vector< std::vector< std::string > > returnVector;
std::ifstream inFile(csvFileName.c_str());
int row = 0;
std::vector< size_t > inputColumnIndeces, inputLabelIndeces;
for (std::string line; std::getline(inFile, line, '\n');)
{
CSVDict tempDict;
std::vector< std::string > rowVec;
line.erase(std::remove(line.begin(), line.end(), '"'), line.end());
rowVec = stringSplit(line, delim);
// for the first row, record the indeces of the inputColumns and inputLabels
if (row == 0)
{
for (size_t i = 0; i < rowVec.size(); i++)
{
for (size_t j = 0; j < inputColumnsVec.size(); j++)
{
if (rowVec[i] == inputColumnsVec[j])
{
inputColumnIndeces.push_back(i);
}
}
for (size_t j = 0; j < inputLabelsVec.size(); j++)
{
if (rowVec[i] == inputLabelsVec[j])
{
inputLabelIndeces.push_back(i);
}
}
}
}
else
{
for (size_t i = 0; i < inputColumnIndeces.size(); i++)
{
tempDict.inputImages.push_back(rowVec[inputColumnIndeces[i]]);
}
for (size_t i = 0; i < inputLabelIndeces.size(); i++)
{
double test = std::atof(rowVec[inputLabelIndeces[i]].c_str());
tempDict.inputLabels.push_back(std::atof(rowVec[inputLabelIndeces[i]].c_str()));
}
return_CSVDict.push_back(tempDict);
}
row++;
}
return return_CSVDict;
}
你可能想看看我的自由/开源软件项目CSVfix(更新链接),这是一个用c++编写的CSV流编辑器。CSV解析器不是什么好东西,但它完成了工作,整个包可以在不编写任何代码的情况下满足您的需要。
CSV解析器请参见alib/src/a_csv.cpp,使用示例请参见csvlib/src/csved_ioman.cpp (IOManager::ReadCSV)。