有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

出于好奇,我试着对其进行基准测试……

import org.junit.Test;
import static org.junit.Assert.*;


public class TestStack1306727 {

    @Test
    public void bench(){
        int number=1000;
        int a= String.valueOf(number).length();
        int b= 1 + (int)Math.floor(Math.log10(number));

        assertEquals(a,b);
        int i=0;
        int s=0;
        long startTime = System.currentTimeMillis();
        for(i=0, s=0; i< 100000000; i++){
            a= String.valueOf(number).length();
            s+=a;
        }
        long stopTime = System.currentTimeMillis();
        long runTime = stopTime - startTime;
        System.out.println("Run time 1: " + runTime);
        System.out.println("s: "+s);
        startTime = System.currentTimeMillis();
        for(i=0,s=0; i< 100000000; i++){
            b= number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));
            s+=b;
        }
        stopTime = System.currentTimeMillis();
        runTime = stopTime - startTime;
        System.out.println("Run time 2: " + runTime);
        System.out.println("s: "+s);
        assertEquals(a,b);


    }
}

结果如下:

Run time 1: 6765
s: 400000000
Run time 2: 6000
s: 400000000

现在我想知道我的基准测试是否真的意味着什么,但我确实在基准测试本身的多次运行中得到了一致的结果(一毫秒内的变化)……:)看起来这是无用的尝试和优化…


编辑:根据ptomli的注释,我在上面的代码中用' I '替换'number',并在5次运行的bench中得到以下结果:

Run time 1: 11500
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11485
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11469
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11500
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11484
s: 788888890
Run time 2: 8547
s: 788888890

其他回答

最快的方法:分而治之。

Assuming your range is 0 to MAX_INT, then you have 1 to 10 digits. You can approach this interval using divide and conquer, with up to 4 comparisons per each input. First, you divide [1..10] into [1..5] and [6..10] with one comparison, and then each length 5 interval you divide using one comparison into one length 3 and one length 2 interval. The length 2 interval requires one more comparison (total 3 comparisons), the length 3 interval can be divided into length 1 interval (solution) and a length 2 interval. So, you need 3 or 4 comparisons.

没有除法,没有浮点运算,没有昂贵的对数,只有整数比较。

代码(长但快):

if (n < 100000) {
    // 5 or less
    if (n < 100){
        // 1 or 2
        if (n < 10)
            return 1;
        else
            return 2;
    } else {
        // 3 or 4 or 5
        if (n < 1000)
            return 3;
        else {
            // 4 or 5
            if (n < 10000)
                return 4;
            else
                return 5;
        }
    }
} else {
    // 6 or more
    if (n < 10000000) {
        // 6 or 7
        if (n < 1000000)
            return 6;
        else
            return 7;
    } else {
        // 8 to 10
        if (n < 100000000)
            return 8;
        else {
            // 9 or 10
            if (n < 1000000000)
                return 9;
            else
                return 10;
        }
    }
}

基准测试(在JVM预热之后)——查看下面的代码以了解基准测试是如何运行的:

基线方法(使用String.length): 2145毫秒 Log10方法:711ms = 3.02次 和基线一样快 重复除:2797ms = 0.77次 和基线一样快 分治:74ms = 28.99 时间和基线一样快

完整的代码:

public static void main(String[] args) throws Exception {
    
    // validate methods:
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method2(i))
            System.out.println(i);
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method3(i))
            System.out.println(i + " " + method1(i) + " " + method3(i));
    for (int i = 333; i < 2000000000; i += 1000)
        if (method1(i) != method3(i))
            System.out.println(i + " " + method1(i) + " " + method3(i));
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method4(i))
            System.out.println(i + " " + method1(i) + " " + method4(i));
    for (int i = 333; i < 2000000000; i += 1000)
        if (method1(i) != method4(i))
            System.out.println(i + " " + method1(i) + " " + method4(i));
    
    // work-up the JVM - make sure everything will be run in hot-spot mode
    allMethod1();
    allMethod2();
    allMethod3();
    allMethod4();
    
    // run benchmark
    Chronometer c;
    
    c = new Chronometer(true);
    allMethod1();
    c.stop();
    long baseline = c.getValue();
    System.out.println(c);
    
    c = new Chronometer(true);
    allMethod2();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
    
    c = new Chronometer(true);
    allMethod3();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
    
    c = new Chronometer(true);
    allMethod4();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
}


private static int method1(int n) {
    return Integer.toString(n).length();
}

private static int method2(int n) {
    if (n == 0)
        return 1;
    return (int)(Math.log10(n) + 1);
}

private static int method3(int n) {
    if (n == 0)
        return 1;
    int l;
    for (l = 0 ; n > 0 ;++l)
        n /= 10;
    return l;
}

private static int method4(int n) {
    if (n < 100000) {
        // 5 or less
        if (n < 100) {
            // 1 or 2
            if (n < 10)
                return 1;
            else
                return 2;
        } else {
            // 3 or 4 or 5
            if (n < 1000)
                return 3;
            else {
                // 4 or 5
                if (n < 10000)
                    return 4;
                else
                    return 5;
            }
        }
    } else {
        // 6 or more
        if (n < 10000000) {
            // 6 or 7
            if (n < 1000000)
                return 6;
            else
                return 7;
        } else {
            // 8 to 10
            if (n < 100000000)
                return 8;
            else {
                // 9 or 10
                if (n < 1000000000)
                    return 9;
                else
                    return 10;
            }
        }
    }
}


private static int allMethod1() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method1(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method1(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method1(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method1(i);
    
    return x;
}

private static int allMethod2() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method2(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method2(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method2(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method2(i);
    
    return x;
}

private static int allMethod3() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method3(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method3(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method3(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method3(i);
    
    return x;
}

private static int allMethod4() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method4(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method4(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method4(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method4(i);
    
    return x;
}

基准:

基线方法(String.length): 2145ms Log10方法:711ms =基线速度的3.02倍 重复除:2797ms =基线速度的0.77倍 分治:74毫秒= 28.99倍的基线速度


Edit

在我写完基准测试之后,我偷偷地看了一下Integer。toString来自Java 6,我发现它使用:

final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
                                  99999999, 999999999, Integer.MAX_VALUE };

// Requires positive x
static int stringSize(int x) {
    for (int i=0; ; i++)
        if (x <= sizeTable[i])
            return i+1;
}

我以我的分治方案为基准:

分治法:104毫秒 Java 6解决方案-迭代和比较:406ms

我的速度大约是Java 6解决方案的4倍。

对数是你的朋友:

int n = 1000;
int length = (int)(Math.log10(n)+1);

NB:只对n >有效0。

由于以10为基数的整数的位数只是1 + truncate(log10(number)),您可以这样做:

public class Test {

    public static void main(String[] args) {

        final int number = 1234;
        final int digits = 1 + (int)Math.floor(Math.log10(number));

        System.out.println(digits);
    }
}

被编辑是因为我的最后一次编辑修复了代码示例,但没有修复描述。

我们可以使用递归循环来实现这一点

    public static int digitCount(int numberInput, int i) {
        while (numberInput > 0) {
        i++;
        numberInput = numberInput / 10;
        digitCount(numberInput, i);
        }
        return i;
    }

    public static void printString() {
        int numberInput = 1234567;
        int digitCount = digitCount(numberInput, 0);

        System.out.println("Count of digit in ["+numberInput+"] is ["+digitCount+"]");
    }

下面是JDK开发人员给出的解决方案。JDK 17 (Long类):

/**
 * Returns the string representation size for a given long value.
 *
 * @param x long value
 * @return string size
 *
 * @implNote There are other ways to compute this: e.g. binary search,
 * but values are biased heavily towards zero, and therefore linear search
 * wins. The iteration results are also routinely inlined in the generated
 * code after loop unrolling.
 */
static int stringSize(long x) {
    int d = 1;
    if (x >= 0) {
        d = 0;
        x = -x;
    }
    long p = -10;
    for (int i = 1; i < 19; i++) {
        if (x > p)
            return i + d;
        p = 10 * p;
    }
    return 19 + d;
}

注意,如果需要的话,该方法会考虑减号。

不幸的是,该方法没有公开。

在性能方面,您可以从评论中看到,JDK开发人员与其他选项相比至少考虑了这一点。我猜 分而治之的方法倾向于较小的数字,效果会稍好一些 更好,因为CPU可以比整数更快地进行整数比较 乘法。但这种差异可能小到无法测量。

无论如何,我希望JDK中已经公开了这个方法,这样人们就不会开始使用自己的方法了。