有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

那简单的数学呢?除以10,直到0。

public static int getSize(long number) {
        int count = 0;
        while (number > 0) {
            count += 1;
            number = (number / 10);
        }
        return count;
    }

其他回答

一个人想要这样做主要是因为他/她想要“呈现”它,这主要意味着它最终需要显式或隐式地“toString-ed”(或以另一种方式转换);才能呈现(例如打印出来)。如果是这种情况,那么只需尝试显式地使用必要的“toString”并计算位数。

这是我做的一个非常简单的方法,适用于任何数字:

public static int numberLength(int userNumber) {

    int numberCounter = 10;
    boolean condition = true;
    int digitLength = 1;

    while (condition) {
        int numberRatio = userNumber / numberCounter;
        if (numberRatio < 1) {
            condition = false;
        } else {
            digitLength++;
            numberCounter *= 10;
        }
    }

    return digitLength; 
}

它的工作方式是使用数字计数器变量,即10 = 1位空格。例如。1 = 1十分之一=> 1位空格。因此,如果你有int number = 103342;你会得到6,因为这相当于。000001个空格。还有,谁有更好的numberCounter变量名?我想不出比这更好的了。

编辑:我想到了一个更好的解释。本质上,这个while循环所做的就是让你的数字除以10,直到它小于1。从本质上讲,当你将一个数除以10时,你是在向后移动一个数字空间,所以你只需将它除以10,直到你的数字中的位数小于1。

下面是另一个版本,可以计算小数中的数字数量:

public static int repeatingLength(double decimalNumber) {

    int numberCounter = 1;
    boolean condition = true;
    int digitLength = 1;

    while (condition) {
        double numberRatio = decimalNumber * numberCounter;

        if ((numberRatio - Math.round(numberRatio)) < 0.0000001) {
            condition = false;
        } else {
            digitLength++;
            numberCounter *= 10;
        }
    }
    return digitLength - 1;
}

Two comments on your benchmark: Java is a complex environment, what with just-in-time compiling and garbage collection and so forth, so to get a fair comparison, whenever I run a benchmark, I always: (a) enclose the two tests in a loop that runs them in sequence 5 or 10 times. Quite often the runtime on the second pass through the loop is quite different from the first. And (b) After each "approach", I do a System.gc() to try to trigger a garbage collection. Otherwise, the first approach might generate a bunch of objects, but not quite enough to force a garbage collection, then the second approach creates a few objects, the heap is exhausted, and garbage collection runs. Then the second approach is "charged" for picking up the garbage left by the first approach. Very unfair!

也就是说,上述两种方法在本例中都没有产生显著差异。

不管有没有这些修改,我得到的结果和你完全不同。当我运行这个时,是的,toString方法给出的运行时间为6400到6600 millis,而log方法给出的运行时间为20,000到20,400 millis。对数方法对我来说不是稍微快一点,而是慢了3倍。

请注意,这两种方法涉及非常不同的代价,所以这并不完全令人震惊:toString方法将创建许多必须清理的临时对象,而log方法需要更密集的计算。因此,可能区别在于,在内存较少的机器上,toString需要更多的垃圾收集回合,而在处理器较慢的机器上,额外的log计算将更加痛苦。

我还尝试了第三种方法。我写了这个小函数:

static int numlength(int n)
{
    if (n == 0) return 1;
    int l;
    n=Math.abs(n);
    for (l=0;n>0;++l)
        n/=10;
    return l;           
}

在我的机器上,它运行在1600到1900毫厘之间——不到toString方法的1/3,log方法的1/10。

如果您的数字范围很广,您可以通过开始除以1000或1,000,000来进一步加快速度,以减少循环的次数。我还没玩过。

这取决于你对“整洁”的定义。我认为下面的代码相当简洁,运行速度也很快。

它基于Marian的回答,扩展到所有long值,并使用?:运营商。

private static long[] DIGITS = { 1l,
                                 10l,
                                 100l,
                                 1000l,
                                 10000l,
                                 100000l,
                                 1000000l,
                                 10000000l,
                                 100000000l,
                                 1000000000l,
                                 10000000000l,
                                 100000000000l,
                                 1000000000000l,
                                 10000000000000l,
                                 100000000000000l,
                                 1000000000000000l,
                                 10000000000000000l,
                                 100000000000000000l,
                                 1000000000000000000l };

public static int numberOfDigits(final long n)
{
    return n == Long.MIN_VALUE ? 19 : n < 0l ? numberOfDigits(-n) :
            n < DIGITS[8] ? // 1-8
              n < DIGITS[4] ? // 1-4
                n < DIGITS[2] ? // 1-2
                  n < DIGITS[1] ? 1 : 2 : // 1-2
                        n < DIGITS[3] ? 3 : 4 : // 3-4
                      n < DIGITS[6] ? // 5-8
                        n < DIGITS[5] ? 5 : 6 : // 5-6
                      n < DIGITS[7] ? 7 : 8 : // 7-8
            n < DIGITS[16] ? // 9-16
              n < DIGITS[12] ? // 9-12
                n < DIGITS[10] ? // 9-10
                  n < DIGITS[9] ? 9 : 10 : // 9-10
                        n < DIGITS[11] ? 11 : 12 : // 11-12
                      n < DIGITS[14] ? // 13-16
                        n < DIGITS[13] ? 13 : 14 : // 13-14
                      n < DIGITS[15] ? 15 : 16 : // 15-16
            n < DIGITS[17] ? 17 :  // 17-19
            n < DIGITS[18] ? 18 :
            19;
}

你的基于字符串的解决方案是完全OK的,没有什么“不整洁”的。你必须意识到,在数学上,数字没有长度,也没有数字。长度和数字都是数字在特定基底(即字符串)中的物理表示形式的属性。

基于对数的解决方案在内部完成(部分)与基于字符串的解决方案相同的工作,并且可能(微不足道地)更快,因为它只生成长度而忽略数字。但实际上我并不认为它的意图更明确——这是最重要的因素。