受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
这是我的实现,在C, O(1)内存复杂度,原地旋转,顺时针90度:
#include <stdio.h>
#define M_SIZE 5
static void initMatrix();
static void printMatrix();
static void rotateMatrix();
static int m[M_SIZE][M_SIZE];
int main(void){
initMatrix();
printMatrix();
rotateMatrix();
printMatrix();
return 0;
}
static void initMatrix(){
int i, j;
for(i = 0; i < M_SIZE; i++){
for(j = 0; j < M_SIZE; j++){
m[i][j] = M_SIZE*i + j + 1;
}
}
}
static void printMatrix(){
int i, j;
printf("Matrix\n");
for(i = 0; i < M_SIZE; i++){
for(j = 0; j < M_SIZE; j++){
printf("%02d ", m[i][j]);
}
printf("\n");
}
printf("\n");
}
static void rotateMatrix(){
int r, c;
for(r = 0; r < M_SIZE/2; r++){
for(c = r; c < M_SIZE - r - 1; c++){
int tmp = m[r][c];
m[r][c] = m[M_SIZE - c - 1][r];
m[M_SIZE - c - 1][r] = m[M_SIZE - r - 1][M_SIZE - c - 1];
m[M_SIZE - r - 1][M_SIZE - c - 1] = m[c][M_SIZE - r - 1];
m[c][M_SIZE - r - 1] = tmp;
}
}
}
其他回答
试试我图书馆的算盘——常见的:
@Test
public void test_42519() throws Exception {
final IntMatrix matrix = IntMatrix.range(0, 16).reshape(4);
N.println("======= original =======================");
matrix.println();
// print out:
// [0, 1, 2, 3]
// [4, 5, 6, 7]
// [8, 9, 10, 11]
// [12, 13, 14, 15]
N.println("======= rotate 90 ======================");
matrix.rotate90().println();
// print out:
// [12, 8, 4, 0]
// [13, 9, 5, 1]
// [14, 10, 6, 2]
// [15, 11, 7, 3]
N.println("======= rotate 180 =====================");
matrix.rotate180().println();
// print out:
// [15, 14, 13, 12]
// [11, 10, 9, 8]
// [7, 6, 5, 4]
// [3, 2, 1, 0]
N.println("======= rotate 270 ======================");
matrix.rotate270().println();
// print out:
// [3, 7, 11, 15]
// [2, 6, 10, 14]
// [1, 5, 9, 13]
// [0, 4, 8, 12]
N.println("======= transpose =======================");
matrix.transpose().println();
// print out:
// [0, 4, 8, 12]
// [1, 5, 9, 13]
// [2, 6, 10, 14]
// [3, 7, 11, 15]
final IntMatrix bigMatrix = IntMatrix.range(0, 10000_0000).reshape(10000);
// It take about 2 seconds to rotate 10000 X 10000 matrix.
Profiler.run(1, 2, 3, "sequential", () -> bigMatrix.rotate90()).printResult();
// Want faster? Go parallel. 1 second to rotate 10000 X 10000 matrix.
final int[][] a = bigMatrix.array();
final int[][] c = new int[a[0].length][a.length];
final int n = a.length;
final int threadNum = 4;
Profiler.run(1, 2, 3, "parallel", () -> {
IntStream.range(0, n).parallel(threadNum).forEach(i -> {
for (int j = 0; j < n; j++) {
c[i][j] = a[n - j - 1][i];
}
});
}).printResult();
}
我的c#示例代码的伟大算法发送@dimple:
/* Author: Dudi,
* http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */
using System.IO;
using System;
class Program
{
static void Main()
{
Console.WriteLine("Rotating this matrix by 90+ degree:");
int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
//int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};
print2dArray(ref values);
transpose2dArray(ref values);
//print2dArray(ref values);
reverse2dArray(ref values);
Console.WriteLine("Output:");
print2dArray(ref values);
}
static void print2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
Console.Write(matrix[n,m] +"\t");
}
Console.WriteLine();
}
Console.WriteLine();
}
static void transpose2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
if(n>m){
int tmp = matrix[n,m];
matrix[n,m] = matrix[m,n];
matrix[m,n] = tmp;
}
}
}
}
static void reverse2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen/2; m++){
int tmp = matrix[n,m];
matrix[n,m] = matrix[n, mLen-1-m];
matrix[n,mLen-1-m] = tmp;
}
}
}
}
/*
Rotating this matrix by 90+ degree:
1 2 3
4 5 6
7 8 9
Output:
7 4 1
8 5 2
9 6 3
*/
为新手程序员,在纯c++。(宝蓝的东西)
#include<iostream.h>
#include<conio.h>
int main()
{
clrscr();
int arr[10][10]; // 2d array that holds input elements
int result[10][10]; //holds result
int m,n; //rows and columns of arr[][]
int x,y; //rows and columns of result[][]
int i,j; //loop variables
int t; //temporary , holds data while conversion
cout<<"Enter no. of rows and columns of array: ";
cin>>m>>n;
cout<<"\nEnter elements of array: \n\n";
for(i = 0; i < m; i++)
{
for(j = 0; j<n ; j++)
{
cin>>arr[i][j]; // input array elements from user
}
}
//rotating matrix by +90 degrees
x = n ; //for non-square matrix
y = m ;
for(i = 0; i < x; i++)
{ t = m-1; // to create required array bounds
for(j = 0; j < y; j++)
{
result[i][j] = arr[t][i];
t--;
}
}
//print result
cout<<"\nRotated matrix is: \n\n";
for(i = 0; i < x; i++)
{
for(j = 0; j < y; j++)
{
cout<<result[i][j]<<" ";
}
cout<<"\n";
}
getch();
return 0;
}
基于社区wiki算法和这个转置数组的SO答案,这里是一个Swift 4版本,可以逆时针旋转一些2D数组90度。这里假设matrix是一个2D数组:
func rotate(matrix: [[Int]]) -> [[Int]] {
let transposedPoints = transpose(input: matrix)
let rotatedPoints = transposedPoints.map{ Array($0.reversed()) }
return rotatedPoints
}
fileprivate func transpose<T>(input: [[T]]) -> [[T]] {
if input.isEmpty { return [[T]]() }
let count = input[0].count
var out = [[T]](repeating: [T](), count: count)
for outer in input {
for (index, inner) in outer.enumerated() {
out[index].append(inner)
}
}
return out
}
我只用一个循环就能做到。时间复杂度看起来像O(K)其中K是数组中的所有元素。 下面是我用JavaScript做的:
首先,我们用一个数组来表示n^2矩阵。然后,像这样迭代它:
/**
* Rotates matrix 90 degrees clockwise
* @param arr: the source array
* @param n: the array side (array is square n^2)
*/
function rotate (arr, n) {
var rotated = [], indexes = []
for (var i = 0; i < arr.length; i++) {
if (i < n)
indexes[i] = i * n + (n - 1)
else
indexes[i] = indexes[i - n] - 1
rotated[indexes[i]] = arr[i]
}
return rotated
}
基本上,我们转换源数组下标:
[0,1,2,3,4,5,6,7,8] => [2,5,8,1,4,7,0,3 6]
然后,使用这个转换后的索引数组,我们将实际值放在最终旋转的数组中。
下面是一些测试用例:
//n=3
rotate([
1, 2, 3,
4, 5, 6,
7, 8, 9], 3))
//result:
[7, 4, 1,
8, 5, 2,
9, 6, 3]
//n=4
rotate([
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16], 4))
//result:
[13, 9, 5, 1,
14, 10, 6, 2,
15, 11, 7, 3,
16, 12, 8, 4]
//n=5
rotate([
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25], 5))
//result:
[21, 16, 11, 6, 1,
22, 17, 12, 7, 2,
23, 18, 13, 8, 3,
24, 19, 14, 9, 4,
25, 20, 15, 10, 5]