我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

还有一个O(N^(3/2))非最优解。不过,这很有趣。

首先预处理大小为N^0.5的每个部分乘法(这在O(N)时间复杂度中完成)。然后,计算每个数字的其他值的倍数可以在2*O(N^0.5)时间内完成(为什么?因为您只需要将其他((N^0.5) - 1)数字的最后一个元素相乘,并将结果与属于当前数字组的((N^0.5) - 1)数字相乘。对每一个数都这样做,可以得到O(N^(3/2))时间。

例子:

4, 6, 7, 2, 3, 1, 9, 5, 8

部分结果: 4*6*7 = 168 2*3*1 = 6 9*5*8 = 360

要计算3的值,需要将其他组的值乘以168*360,然后乘以2*1。

其他回答

使用EcmaScript 2015编码

'use strict'

/*
Write a function that, given an array of n integers, returns an array of all possible products using exactly (n - 1) of those integers.
*/
/*
Correct behavior:
- the output array will have the same length as the input array, ie. one result array for each skipped element
- to compare result arrays properly, the arrays need to be sorted
- if array lemgth is zero, result is empty array
- if array length is 1, result is a single-element array of 1

input array: [1, 2, 3]
1*2 = 2
1*3 = 3
2*3 = 6
result: [2, 3, 6]
*/
class Test {
  setInput(i) {
    this.input = i
    return this
  }
  setExpected(e) {
    this.expected = e.sort()
    return this
  }
}

class FunctionTester {
  constructor() {
    this.tests = [
      new Test().setInput([1, 2, 3]).setExpected([6, 3, 2]),
      new Test().setInput([2, 3, 4, 5, 6]).setExpected([3 * 4 * 5 * 6, 2 * 4 * 5 * 6, 2 * 3 * 5 * 6, 2 * 3 * 4 * 6, 2 * 3 * 4 * 5]),
    ]
  }

  test(f) {
    console.log('function:', f.name)
    this.tests.forEach((test, index) => {
      var heading = 'Test #' + index + ':'
      var actual = f(test.input)
      var failure = this._check(actual, test)

      if (!failure) console.log(heading, 'input:', test.input, 'output:', actual)
      else console.error(heading, failure)

      return !failure
    })
  }

  testChain(f) {
    this.test(f)
    return this
  }

  _check(actual, test) {
      if (!Array.isArray(actual)) return 'BAD: actual not array'
      if (actual.length !== test.expected.length) return 'BAD: actual length is ' + actual.length + ' expected: ' + test.expected.length
      if (!actual.every(this._isNumber)) return 'BAD: some actual values are not of type number'
      if (!actual.sort().every(isSame)) return 'BAD: arrays not the same: [' + actual.join(', ') + '] and [' + test.expected.join(', ') + ']'

      function isSame(value, index) {
        return value === test.expected[index]
      }
  }

  _isNumber(v) {
    return typeof v === 'number'
  }
}

/*
Efficient: use two iterations of an aggregate product
We need two iterations, because one aggregate goes from last-to-first
The first iteration populates the array with products of indices higher than the skipped index
The second iteration calculates products of indices lower than the skipped index and multiplies the two aggregates

input array:
1 2 3
   2*3
1*    3
1*2

input array:
2 3 4 5 6
    (3 * 4 * 5 * 6)
(2) *     4 * 5 * 6
(2 * 3) *     5 * 6
(2 * 3 * 4) *     (6)
(2 * 3 * 4 * 5)

big O: (n - 2) + (n - 2)+ (n - 2) = 3n - 6 => o(3n)
*/
function multiplier2(ns) {
  var result = []

  if (ns.length > 1) {
    var lastIndex = ns.length - 1
    var aggregate

    // for the first iteration, there is nothing to do for the last element
    var index = lastIndex
    for (var i = 0; i < lastIndex; i++) {
      if (!i) aggregate = ns[index]
      else aggregate *= ns[index]
      result[--index] = aggregate
    }

    // for second iteration, there is nothing to do for element 0
    // aggregate does not require multiplication for element 1
    // no multiplication is required for the last element
    for (var i = 1; i <= lastIndex; i++) {
      if (i === 1) aggregate = ns[0]
      else aggregate *= ns[i - 1]
      if (i !== lastIndex) result[i] *= aggregate
      else result[i] = aggregate
    }
  } else if (ns.length === 1) result[0] = 1

  return result
}

/*
Create the list of products by iterating over the input array

the for loop is iterated once for each input element: that is n
for every n, we make (n - 1) multiplications, that becomes n (n-1)
O(n^2)
*/
function multiplier(ns) {
  var result = []

  for (var i = 0; i < ns.length; i++) {
    result.push(ns.reduce((reduce, value, index) =>
      !i && index === 1 ? value // edge case: we should skip element 0 and it's the first invocation: ignore reduce
      : index !== i ? reduce * value // multiply if it is not the element that should be skipped
      : reduce))
  }

  return result
}

/*
Multiply by clone the array and remove one of the integers

O(n^2) and expensive array manipulation
*/
function multiplier0(ns) {
  var result = []

  for (var i = 0; i < ns.length; i++) {
    var ns1 = ns.slice() // clone ns array
    ns1.splice(i, 1) // remove element i
    result.push(ns1.reduce((reduce, value) => reduce * value))
  }

  return result
}

new FunctionTester().testChain(multiplier0).testChain(multiplier).testChain(multiplier2)

使用Node.js v4.4.5运行:

Node—harmony integerarrays.js

function: multiplier0
Test #0: input: [ 1, 2, 3 ] output: [ 2, 3, 6 ]
Test #1: input: [ 2, 3, 4, 5, 6 ] output: [ 120, 144, 180, 240, 360 ]
function: multiplier
Test #0: input: [ 1, 2, 3 ] output: [ 2, 3, 6 ]
Test #1: input: [ 2, 3, 4, 5, 6 ] output: [ 120, 144, 180, 240, 360 ]
function: multiplier2
Test #0: input: [ 1, 2, 3 ] output: [ 2, 3, 6 ]
Test #1: input: [ 2, 3, 4, 5, 6 ] output: [ 120, 144, 180, 240, 360 ]

左旅行->右和保持保存产品。称之为过去。- > O (n) 旅行右->左保持产品。称之为未来。- > O (n) 结果[i] =过去[i-1] *将来[i+1] -> O(n) 过去[-1]= 1;和未来(n + 1) = 1;

O(n)

我用Javascript想出了两个解决方案,一个有除法,一个没有

//不除法 函数methodOne(arr) { 加勒比海盗。Map (item => { 加勒比海盗。Reduce ((result, num) => { If (num !== item) { 结果=结果* num; } 返回结果; }, 1) }); } //使用除法 函数methodTwo(arr) { Var mul = arr。Reduce ((result, num) => { 结果=结果* num; 返回结果; }, 1) 加勒比海盗。Map (item => mul/item); } console.log(methodOne([1,2,3,4,5])); console.log(methodTwo([1,2,3,4,5]));

还有一个解决方案,使用除法。有两次遍历。 把所有元素相乘,然后除以每个元素。

将Michael Anderson的解决方案翻译成Haskell:

otherProducts xs = zipWith (*) below above

     where below = scanl (*) 1 $ init xs

           above = tail $ scanr (*) 1 xs