我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。
给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。
输入:[1,2,3,4,5]
输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)]
= [120, 60, 40, 30, 24]
你必须在O(N)中不使用除法来做这个。
下面是一个C实现
O(n)时间复杂度。
输入
#include<stdio.h>
int main()
{
int x;
printf("Enter The Size of Array : ");
scanf("%d",&x);
int array[x-1],i ;
printf("Enter The Value of Array : \n");
for( i = 0 ; i <= x-1 ; i++)
{
printf("Array[%d] = ",i);
scanf("%d",&array[i]);
}
int left[x-1] , right[x-1];
left[0] = 1 ;
right[x-1] = 1 ;
for( i = 1 ; i <= x-1 ; i++)
{
left[i] = left[i-1] * array[i-1];
}
printf("\nThis is Multiplication of array[i-1] and left[i-1]\n");
for( i = 0 ; i <= x-1 ; i++)
{
printf("Array[%d] = %d , Left[%d] = %d\n",i,array[i],i,left[i]);
}
for( i = x-2 ; i >= 0 ; i--)
{
right[i] = right[i+1] * array[i+1];
}
printf("\nThis is Multiplication of array[i+1] and right[i+1]\n");
for( i = 0 ; i <= x-1 ; i++)
{
printf("Array[%d] = %d , Right[%d] = %d\n",i,array[i],i,right[i]);
}
printf("\nThis is Multiplication of Right[i] * Left[i]\n");
for( i = 0 ; i <= x-1 ; i++)
{
printf("Right[%d] * left[%d] = %d * %d = %d\n",i,i,right[i],left[i],right[i]*left[i]);
}
return 0 ;
}
输出
Enter The Size of Array : 5
Enter The Value of Array :
Array[0] = 1
Array[1] = 2
Array[2] = 3
Array[3] = 4
Array[4] = 5
This is Multiplication of array[i-1] and left[i-1]
Array[0] = 1 , Left[0] = 1
Array[1] = 2 , Left[1] = 1
Array[2] = 3 , Left[2] = 2
Array[3] = 4 , Left[3] = 6
Array[4] = 5 , Left[4] = 24
This is Multiplication of array[i+1] and right[i+1]
Array[0] = 1 , Right[0] = 120
Array[1] = 2 , Right[1] = 60
Array[2] = 3 , Right[2] = 20
Array[3] = 4 , Right[3] = 5
Array[4] = 5 , Right[4] = 1
This is Multiplication of Right[i] * Left[i]
Right[0] * left[0] = 120 * 1 = 120
Right[1] * left[1] = 60 * 1 = 60
Right[2] * left[2] = 20 * 2 = 40
Right[3] * left[3] = 5 * 6 = 30
Right[4] * left[4] = 1 * 24 = 24
Process returned 0 (0x0) execution time : 6.548 s
Press any key to continue.
//这是Java中的递归解决方案
//从main product(a,1,0)调用如下;
public static double product(double[] a, double fwdprod, int index){
double revprod = 1;
if (index < a.length){
revprod = product2(a, fwdprod*a[index], index+1);
double cur = a[index];
a[index] = fwdprod * revprod;
revprod *= cur;
}
return revprod;
}