我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

我的第一次尝试,用Python。O (2 n):

def product(l):
    product = 1
    num_zeroes = 0
    pos_zero = -1

    # Multiply all and set positions
    for i, x in enumerate(l):
        if x != 0:
            product *= x
            l[i] = 1.0/x
        else:
            num_zeroes += 1
            pos_zero = i

    # Warning! Zeroes ahead!
    if num_zeroes > 0:
        l = [0] * len(l)

        if num_zeroes == 1:
            l[pos_zero] = product

    else:
        # Now set the definitive elements
        for i in range(len(l)):
            l[i] = int(l[i] * product)

    return l


if __name__ == "__main__":
    print("[0, 0, 4] = " + str(product([0, 0, 4])))
    print("[3, 0, 4] = " + str(product([3, 0, 4])))
    print("[1, 2, 3] = " + str(product([1, 2, 3])))
    print("[2, 3, 4, 5, 6] = " + str(product([2, 3, 4, 5, 6])))
    print("[2, 1, 2, 2, 3] = " + str(product([2, 1, 2, 2, 3])))

输出:

[0, 0, 4] = [0, 0, 0]
[3, 0, 4] = [0, 12, 0]
[1, 2, 3] = [6, 3, 2]
[2, 3, 4, 5, 6] = [360, 240, 180, 144, 120]
[2, 1, 2, 2, 3] = [12, 24, 12, 12, 8]

其他回答

c++, O (n):

long long prod = accumulate(in.begin(), in.end(), 1LL, multiplies<int>());
transform(in.begin(), in.end(), back_inserter(res),
          bind1st(divides<long long>(), prod));
{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

下面是一个C实现 O(n)时间复杂度。 输入

#include<stdio.h>
int main()
{
    int x;
    printf("Enter The Size of Array : ");
    scanf("%d",&x);
    int array[x-1],i ;
    printf("Enter The Value of Array : \n");
      for( i = 0 ; i <= x-1 ; i++)
      {
          printf("Array[%d] = ",i);
          scanf("%d",&array[i]);
      }
    int left[x-1] , right[x-1];
    left[0] = 1 ;
    right[x-1] = 1 ;
      for( i = 1 ; i <= x-1 ; i++)
      {
          left[i] = left[i-1] * array[i-1];
      }
    printf("\nThis is Multiplication of array[i-1] and left[i-1]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
        printf("Array[%d] = %d , Left[%d] = %d\n",i,array[i],i,left[i]);
      }
      for( i = x-2 ; i >= 0 ; i--)
      {
          right[i] = right[i+1] * array[i+1];
      }
   printf("\nThis is Multiplication of array[i+1] and right[i+1]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
        printf("Array[%d] = %d , Right[%d] = %d\n",i,array[i],i,right[i]);
      }
    printf("\nThis is Multiplication of Right[i] * Left[i]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
          printf("Right[%d] * left[%d] = %d * %d = %d\n",i,i,right[i],left[i],right[i]*left[i]);
      }
    return 0 ;
}

输出

    Enter The Size of Array : 5
    Enter The Value of Array :
    Array[0] = 1
    Array[1] = 2
    Array[2] = 3
    Array[3] = 4
    Array[4] = 5

    This is Multiplication of array[i-1] and left[i-1]
    Array[0] = 1 , Left[0] = 1
    Array[1] = 2 , Left[1] = 1
    Array[2] = 3 , Left[2] = 2
    Array[3] = 4 , Left[3] = 6
    Array[4] = 5 , Left[4] = 24

    This is Multiplication of array[i+1] and right[i+1]
    Array[0] = 1 , Right[0] = 120
    Array[1] = 2 , Right[1] = 60
    Array[2] = 3 , Right[2] = 20
    Array[3] = 4 , Right[3] = 5
    Array[4] = 5 , Right[4] = 1

    This is Multiplication of Right[i] * Left[i]
    Right[0] * left[0] = 120 * 1 = 120
    Right[1] * left[1] = 60 * 1 = 60
    Right[2] * left[2] = 20 * 2 = 40
    Right[3] * left[3] = 5 * 6 = 30
    Right[4] * left[4] = 1 * 24 = 24

    Process returned 0 (0x0)   execution time : 6.548 s
    Press any key to continue.

O(n)时间的简洁解:

对于每个元素,计算在它之前出现的所有元素的乘积,并将其存储在数组“pre”中。 对于每个元素,计算该元素之后所有元素的乘积,并将其存储在数组“post”中 为元素i创建一个最终数组result, 结果[i] = pre[i-1]*post[i+1];

使用EcmaScript 2015编码

'use strict'

/*
Write a function that, given an array of n integers, returns an array of all possible products using exactly (n - 1) of those integers.
*/
/*
Correct behavior:
- the output array will have the same length as the input array, ie. one result array for each skipped element
- to compare result arrays properly, the arrays need to be sorted
- if array lemgth is zero, result is empty array
- if array length is 1, result is a single-element array of 1

input array: [1, 2, 3]
1*2 = 2
1*3 = 3
2*3 = 6
result: [2, 3, 6]
*/
class Test {
  setInput(i) {
    this.input = i
    return this
  }
  setExpected(e) {
    this.expected = e.sort()
    return this
  }
}

class FunctionTester {
  constructor() {
    this.tests = [
      new Test().setInput([1, 2, 3]).setExpected([6, 3, 2]),
      new Test().setInput([2, 3, 4, 5, 6]).setExpected([3 * 4 * 5 * 6, 2 * 4 * 5 * 6, 2 * 3 * 5 * 6, 2 * 3 * 4 * 6, 2 * 3 * 4 * 5]),
    ]
  }

  test(f) {
    console.log('function:', f.name)
    this.tests.forEach((test, index) => {
      var heading = 'Test #' + index + ':'
      var actual = f(test.input)
      var failure = this._check(actual, test)

      if (!failure) console.log(heading, 'input:', test.input, 'output:', actual)
      else console.error(heading, failure)

      return !failure
    })
  }

  testChain(f) {
    this.test(f)
    return this
  }

  _check(actual, test) {
      if (!Array.isArray(actual)) return 'BAD: actual not array'
      if (actual.length !== test.expected.length) return 'BAD: actual length is ' + actual.length + ' expected: ' + test.expected.length
      if (!actual.every(this._isNumber)) return 'BAD: some actual values are not of type number'
      if (!actual.sort().every(isSame)) return 'BAD: arrays not the same: [' + actual.join(', ') + '] and [' + test.expected.join(', ') + ']'

      function isSame(value, index) {
        return value === test.expected[index]
      }
  }

  _isNumber(v) {
    return typeof v === 'number'
  }
}

/*
Efficient: use two iterations of an aggregate product
We need two iterations, because one aggregate goes from last-to-first
The first iteration populates the array with products of indices higher than the skipped index
The second iteration calculates products of indices lower than the skipped index and multiplies the two aggregates

input array:
1 2 3
   2*3
1*    3
1*2

input array:
2 3 4 5 6
    (3 * 4 * 5 * 6)
(2) *     4 * 5 * 6
(2 * 3) *     5 * 6
(2 * 3 * 4) *     (6)
(2 * 3 * 4 * 5)

big O: (n - 2) + (n - 2)+ (n - 2) = 3n - 6 => o(3n)
*/
function multiplier2(ns) {
  var result = []

  if (ns.length > 1) {
    var lastIndex = ns.length - 1
    var aggregate

    // for the first iteration, there is nothing to do for the last element
    var index = lastIndex
    for (var i = 0; i < lastIndex; i++) {
      if (!i) aggregate = ns[index]
      else aggregate *= ns[index]
      result[--index] = aggregate
    }

    // for second iteration, there is nothing to do for element 0
    // aggregate does not require multiplication for element 1
    // no multiplication is required for the last element
    for (var i = 1; i <= lastIndex; i++) {
      if (i === 1) aggregate = ns[0]
      else aggregate *= ns[i - 1]
      if (i !== lastIndex) result[i] *= aggregate
      else result[i] = aggregate
    }
  } else if (ns.length === 1) result[0] = 1

  return result
}

/*
Create the list of products by iterating over the input array

the for loop is iterated once for each input element: that is n
for every n, we make (n - 1) multiplications, that becomes n (n-1)
O(n^2)
*/
function multiplier(ns) {
  var result = []

  for (var i = 0; i < ns.length; i++) {
    result.push(ns.reduce((reduce, value, index) =>
      !i && index === 1 ? value // edge case: we should skip element 0 and it's the first invocation: ignore reduce
      : index !== i ? reduce * value // multiply if it is not the element that should be skipped
      : reduce))
  }

  return result
}

/*
Multiply by clone the array and remove one of the integers

O(n^2) and expensive array manipulation
*/
function multiplier0(ns) {
  var result = []

  for (var i = 0; i < ns.length; i++) {
    var ns1 = ns.slice() // clone ns array
    ns1.splice(i, 1) // remove element i
    result.push(ns1.reduce((reduce, value) => reduce * value))
  }

  return result
}

new FunctionTester().testChain(multiplier0).testChain(multiplier).testChain(multiplier2)

使用Node.js v4.4.5运行:

Node—harmony integerarrays.js

function: multiplier0
Test #0: input: [ 1, 2, 3 ] output: [ 2, 3, 6 ]
Test #1: input: [ 2, 3, 4, 5, 6 ] output: [ 120, 144, 180, 240, 360 ]
function: multiplier
Test #0: input: [ 1, 2, 3 ] output: [ 2, 3, 6 ]
Test #1: input: [ 2, 3, 4, 5, 6 ] output: [ 120, 144, 180, 240, 360 ]
function: multiplier2
Test #0: input: [ 1, 2, 3 ] output: [ 2, 3, 6 ]
Test #1: input: [ 2, 3, 4, 5, 6 ] output: [ 120, 144, 180, 240, 360 ]