我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

我的第一次尝试,用Python。O (2 n):

def product(l):
    product = 1
    num_zeroes = 0
    pos_zero = -1

    # Multiply all and set positions
    for i, x in enumerate(l):
        if x != 0:
            product *= x
            l[i] = 1.0/x
        else:
            num_zeroes += 1
            pos_zero = i

    # Warning! Zeroes ahead!
    if num_zeroes > 0:
        l = [0] * len(l)

        if num_zeroes == 1:
            l[pos_zero] = product

    else:
        # Now set the definitive elements
        for i in range(len(l)):
            l[i] = int(l[i] * product)

    return l


if __name__ == "__main__":
    print("[0, 0, 4] = " + str(product([0, 0, 4])))
    print("[3, 0, 4] = " + str(product([3, 0, 4])))
    print("[1, 2, 3] = " + str(product([1, 2, 3])))
    print("[2, 3, 4, 5, 6] = " + str(product([2, 3, 4, 5, 6])))
    print("[2, 1, 2, 2, 3] = " + str(product([2, 1, 2, 2, 3])))

输出:

[0, 0, 4] = [0, 0, 0]
[3, 0, 4] = [0, 12, 0]
[1, 2, 3] = [6, 3, 2]
[2, 3, 4, 5, 6] = [360, 240, 180, 144, 120]
[2, 1, 2, 2, 3] = [12, 24, 12, 12, 8]

其他回答

给你,简单干净的解决方案,复杂度为O(N):

int[] a = {1,2,3,4,5};
    int[] r = new int[a.length];
    int x = 1;
    r[0] = 1;
    for (int i=1;i<a.length;i++){
        r[i]=r[i-1]*a[i-1];
    }
    for (int i=a.length-1;i>0;i--){
        x=x*a[i];
        r[i-1]=x*r[i-1];
    }
    for (int i=0;i<r.length;i++){
        System.out.println(r[i]);
    }

鬼鬼祟祟地绕过“不划分”规则:

sum = 0.0
for i in range(a):
  sum += log(a[i])

for i in range(a):
  output[i] = exp(sum - log(a[i]))

预先计算每个元素左右两边数字的乘积。 对于每个元素,期望值都是它相邻元素乘积的乘积。

#include <stdio.h>

unsigned array[5] = { 1,2,3,4,5};

int main(void)
{
unsigned idx;

unsigned left[5]
        , right[5];
left[0] = 1;
right[4] = 1;

        /* calculate products of numbers to the left of [idx] */
for (idx=1; idx < 5; idx++) {
        left[idx] = left[idx-1] * array[idx-1];
        }

        /* calculate products of numbers to the right of [idx] */
for (idx=4; idx-- > 0; ) {
        right[idx] = right[idx+1] * array[idx+1];
        }

for (idx=0; idx <5 ; idx++) {
        printf("[%u] Product(%u*%u) = %u\n"
                , idx, left[idx] , right[idx]  , left[idx] * right[idx]  );
        }

return 0;
}

结果:

$ ./a.out
[0] Product(1*120) = 120
[1] Product(1*60) = 60
[2] Product(2*20) = 40
[3] Product(6*5) = 30
[4] Product(24*1) = 24

(更新:现在我仔细看,这使用与Michael Anderson, Daniel Migowski和上面的聚基因润滑剂相同的方法)

php版本 使用不除法的array_product函数。 如果我们将i的值临时设为1,那么数组product将完全满足我们的需要

<?php
function product($key, $arr)
{
    $arr[$key] = 1;
    return array_product($arr);
};
$arr = [1, 2, 3, 4, 5];
$newarr = array();


foreach ($arr as $key => $value) {

    $newarr[$key] = product($key, $arr);
}
print_r($newarr);

在这里添加我的javascript解决方案,因为我没有发现任何人建议这样做。 除法是什么,除了数从另一个数中得到一个数的次数吗?我计算了整个数组的乘积,然后遍历每个元素,并减去当前元素直到0:

//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
  var res = [];
  var totalProduct = 1;
  //calculate the total product
  for(var i = 0; i < input.length; i++){
    totalProduct = totalProduct * input[i];
  }
  //populate the result array by "dividing" each value
  for(var i = 0; i < input.length; i++){
    var timesSubstracted = 0;
    var divisor = input[i];
    var dividend = totalProduct;
    while(divisor <= dividend){
      dividend = dividend - divisor;
      timesSubstracted++;
    }
    res.push(timesSubstracted);
  }
  return res;
}