我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是一个C实现 O(n)时间复杂度。 输入

#include<stdio.h>
int main()
{
    int x;
    printf("Enter The Size of Array : ");
    scanf("%d",&x);
    int array[x-1],i ;
    printf("Enter The Value of Array : \n");
      for( i = 0 ; i <= x-1 ; i++)
      {
          printf("Array[%d] = ",i);
          scanf("%d",&array[i]);
      }
    int left[x-1] , right[x-1];
    left[0] = 1 ;
    right[x-1] = 1 ;
      for( i = 1 ; i <= x-1 ; i++)
      {
          left[i] = left[i-1] * array[i-1];
      }
    printf("\nThis is Multiplication of array[i-1] and left[i-1]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
        printf("Array[%d] = %d , Left[%d] = %d\n",i,array[i],i,left[i]);
      }
      for( i = x-2 ; i >= 0 ; i--)
      {
          right[i] = right[i+1] * array[i+1];
      }
   printf("\nThis is Multiplication of array[i+1] and right[i+1]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
        printf("Array[%d] = %d , Right[%d] = %d\n",i,array[i],i,right[i]);
      }
    printf("\nThis is Multiplication of Right[i] * Left[i]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
          printf("Right[%d] * left[%d] = %d * %d = %d\n",i,i,right[i],left[i],right[i]*left[i]);
      }
    return 0 ;
}

输出

    Enter The Size of Array : 5
    Enter The Value of Array :
    Array[0] = 1
    Array[1] = 2
    Array[2] = 3
    Array[3] = 4
    Array[4] = 5

    This is Multiplication of array[i-1] and left[i-1]
    Array[0] = 1 , Left[0] = 1
    Array[1] = 2 , Left[1] = 1
    Array[2] = 3 , Left[2] = 2
    Array[3] = 4 , Left[3] = 6
    Array[4] = 5 , Left[4] = 24

    This is Multiplication of array[i+1] and right[i+1]
    Array[0] = 1 , Right[0] = 120
    Array[1] = 2 , Right[1] = 60
    Array[2] = 3 , Right[2] = 20
    Array[3] = 4 , Right[3] = 5
    Array[4] = 5 , Right[4] = 1

    This is Multiplication of Right[i] * Left[i]
    Right[0] * left[0] = 120 * 1 = 120
    Right[1] * left[1] = 60 * 1 = 60
    Right[2] * left[2] = 20 * 2 = 40
    Right[3] * left[3] = 5 * 6 = 30
    Right[4] * left[4] = 1 * 24 = 24

    Process returned 0 (0x0)   execution time : 6.548 s
    Press any key to continue.

其他回答

这个解决方案可以被认为是C/ c++的。 假设我们有一个包含n个元素的数组a 像a[n]一样,那么伪代码将如下所示。

for(j=0;j<n;j++)
  { 
    prod[j]=1;

    for (i=0;i<n;i++)
    {   
        if(i==j)
        continue;  
        else
        prod[j]=prod[j]*a[i];
  }

试试这个!

import java.util.*;
class arrProduct
{
 public static void main(String args[])
     {
         //getting the size of the array
         Scanner s = new Scanner(System.in);
            int noe = s.nextInt();

        int out[]=new int[noe];
         int arr[] = new int[noe];

         // getting the input array
         for(int k=0;k<noe;k++)
         {
             arr[k]=s.nextInt();
         }

         int val1 = 1,val2=1;
         for(int i=0;i<noe;i++)
         {
             int res=1;

                 for(int j=1;j<noe;j++)
                 {
                if((i+j)>(noe-1))
                {

                    int diff = (i+j)-(noe);

                    if(arr[diff]!=0)
                    {
                    res = res * arr[diff];
                    }
                }

                else
                {
                    if(arr[i+j]!=0)
                    {
                    res= res*arr[i+j];
                    }
                }


             out[i]=res;

         }
         }

         //printing result
         System.out.print("Array of Product: [");
         for(int l=0;l<out.length;l++)
         {
             if(l!=out.length-1)
             {
            System.out.print(out[l]+",");
             }
             else
             {
                 System.out.print(out[l]);
             }
         }
         System.out.print("]");
     }

}

在这里添加我的javascript解决方案,因为我没有发现任何人建议这样做。 除法是什么,除了数从另一个数中得到一个数的次数吗?我计算了整个数组的乘积,然后遍历每个元素,并减去当前元素直到0:

//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
  var res = [];
  var totalProduct = 1;
  //calculate the total product
  for(var i = 0; i < input.length; i++){
    totalProduct = totalProduct * input[i];
  }
  //populate the result array by "dividing" each value
  for(var i = 0; i < input.length; i++){
    var timesSubstracted = 0;
    var divisor = input[i];
    var dividend = totalProduct;
    while(divisor <= dividend){
      dividend = dividend - divisor;
      timesSubstracted++;
    }
    res.push(timesSubstracted);
  }
  return res;
}

技巧:

使用以下方法:

public int[] calc(int[] params) {

int[] left = new int[n-1]
in[] right = new int[n-1]

int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
    fac1 = fac1 * params[i];
    fac2 = fac2 * params[n-i];
    left[i] = fac1;
    right[i] = fac2; 
}
fac = 1;

int[] results = new int[n];
for( int i=0; i<n; i++ ) {
    results[i] = left[i] * right[i];
}

是的,我确定我错过了一些I -1而不是I,但这是解决它的方法。

我的第一次尝试,用Python。O (2 n):

def product(l):
    product = 1
    num_zeroes = 0
    pos_zero = -1

    # Multiply all and set positions
    for i, x in enumerate(l):
        if x != 0:
            product *= x
            l[i] = 1.0/x
        else:
            num_zeroes += 1
            pos_zero = i

    # Warning! Zeroes ahead!
    if num_zeroes > 0:
        l = [0] * len(l)

        if num_zeroes == 1:
            l[pos_zero] = product

    else:
        # Now set the definitive elements
        for i in range(len(l)):
            l[i] = int(l[i] * product)

    return l


if __name__ == "__main__":
    print("[0, 0, 4] = " + str(product([0, 0, 4])))
    print("[3, 0, 4] = " + str(product([3, 0, 4])))
    print("[1, 2, 3] = " + str(product([1, 2, 3])))
    print("[2, 3, 4, 5, 6] = " + str(product([2, 3, 4, 5, 6])))
    print("[2, 1, 2, 2, 3] = " + str(product([2, 1, 2, 2, 3])))

输出:

[0, 0, 4] = [0, 0, 0]
[3, 0, 4] = [0, 12, 0]
[1, 2, 3] = [6, 3, 2]
[2, 3, 4, 5, 6] = [360, 240, 180, 144, 120]
[2, 1, 2, 2, 3] = [12, 24, 12, 12, 8]