显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
此外,if do list(xrange(…))将等同于range(…)。
所以列表很慢。
而且xrange确实没有完全完成序列
这就是为什么它不是一个列表,而是一个xrange对象
其他回答
请参阅本文,了解range和xrange之间的差异:
引用:
range返回您所认为的结果:连续列表整数,具有以0开头的定义长度。xrange,返回一个“xrange对象”,它的行为非常像迭代器
xrange只存储范围参数并根据需要生成数字。然而,Python的C实现目前将其args限制为C longs:
xrange(2**32-1, 2**32+1) # When long is 32 bits, OverflowError: Python int too large to convert to C long
range(2**32-1, 2**32+1) # OK --> [4294967295L, 4294967296L]
注意,在Python3.0中只有范围,它的行为类似于2.xxrange,但没有对最小和最大端点的限制。
一定要花一些时间阅读图书馆参考资料。你越熟悉它,就越能更快地找到类似问题的答案。特别重要的是关于内置对象和类型的前几章。
xrange类型的优点是xrange对象总是使用相同数量的内存,无论它代表的范围大小如何。没有一致的性能优势。
另一种快速查找Python构造信息的方法是docstring和help函数:
print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)
每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:
a=0
for i in range(1,100000):
a=a+i
然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:
for i in list(range(1,100000)):
a=a+i
它立即占用了大量内存。我确信。你可以自己试试。
如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。
range(x,y)返回x和y之间的每个数字的列表,如果使用for循环,则range会变慢。事实上,范围的指数范围更大。range(x.y)将打印出x和y之间所有数字的列表
xrange(x,y)返回xrange,但如果使用for循环,xrange会更快。xrange的索引范围较小。xrange不仅会打印出xrange(x,y),还会保留其中的所有数字。
[In] range(1,10)
[Out] [1, 2, 3, 4, 5, 6, 7, 8, 9]
[In] xrange(1,10)
[Out] xrange(1,10)
如果您使用for循环,那么它会起作用
[In] for i in range(1,10):
print i
[Out] 1
2
3
4
5
6
7
8
9
[In] for i in xrange(1,10):
print i
[Out] 1
2
3
4
5
6
7
8
9
使用循环时没有太大的区别,但打印循环时有区别!