显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

当前回答

对于范围(..)/xrange(..)的较小参数,差异减小:

$ python -m timeit "for i in xrange(10111):" " for k in range(100):" "  pass"
10 loops, best of 3: 59.4 msec per loop

$ python -m timeit "for i in xrange(10111):" " for k in xrange(100):" "  pass"
10 loops, best of 3: 46.9 msec per loop

在这种情况下,xrange(100)的效率仅提高约20%。

其他回答

当在一个循环中测试range和xrange时(我知道我应该使用timeit,但这是使用一个简单的列表理解示例从内存中快速删除的),我发现如下:

import time

for x in range(1, 10):

    t = time.time()
    [v*10 for v in range(1, 10000)]
    print "range:  %.4f" % ((time.time()-t)*100)

    t = time.time()
    [v*10 for v in xrange(1, 10000)]
    print "xrange: %.4f" % ((time.time()-t)*100)

其给出:

$python range_tests.py
range:  0.4273
xrange: 0.3733
range:  0.3881
xrange: 0.3507
range:  0.3712
xrange: 0.3565
range:  0.4031
xrange: 0.3558
range:  0.3714
xrange: 0.3520
range:  0.3834
xrange: 0.3546
range:  0.3717
xrange: 0.3511
range:  0.3745
xrange: 0.3523
range:  0.3858
xrange: 0.3997 <- garbage collection?

或者,在for循环中使用xrange:

range:  0.4172
xrange: 0.3701
range:  0.3840
xrange: 0.3547
range:  0.3830
xrange: 0.3862 <- garbage collection?
range:  0.4019
xrange: 0.3532
range:  0.3738
xrange: 0.3726
range:  0.3762
xrange: 0.3533
range:  0.3710
xrange: 0.3509
range:  0.3738
xrange: 0.3512
range:  0.3703
xrange: 0.3509

我的代码段测试是否正确?对xrange的较慢实例有何评论?或者更好的例子:-)

xrange返回一个迭代器,每次只在内存中保留一个数字。范围将整个数字列表保存在内存中。

每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:

a=0
for i in range(1,100000):
    a=a+i

然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:

for i in list(range(1,100000)):
    a=a+i

它立即占用了大量内存。我确信。你可以自己试试。

如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。

在这个简单的示例中,您将发现xrange优于range的优势:

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 4.49153590202 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 7.04547905922 seconds

在xrange的情况下,上面的示例没有反映出任何明显更好的内容。

现在看看下面的例子,与xrange相比,range真的很慢。

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 0.000764846801758 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer() 

print "time taken: ", (t2-t1)  # 2.78506207466 seconds

使用range,它已经创建了一个从0到100000000的列表(耗时),但xrange是一个生成器,它只根据需要生成数字,也就是说,如果迭代继续的话。

在Python-3中,范围功能的实现与Python-2中的xrange功能的实现相同,而他们在Python-3中取消了xrange

快乐编码!!

range(x,y)返回x和y之间的每个数字的列表,如果使用for循环,则range会变慢。事实上,范围的指数范围更大。range(x.y)将打印出x和y之间所有数字的列表

xrange(x,y)返回xrange,但如果使用for循环,xrange会更快。xrange的索引范围较小。xrange不仅会打印出xrange(x,y),还会保留其中的所有数字。

[In] range(1,10)
[Out] [1, 2, 3, 4, 5, 6, 7, 8, 9]
[In] xrange(1,10)
[Out] xrange(1,10)

如果您使用for循环,那么它会起作用

[In] for i in range(1,10):
        print i
[Out] 1
      2
      3
      4
      5
      6
      7
      8
      9
[In] for i in xrange(1,10):
         print i
[Out] 1
      2
      3
      4
      5
      6
      7
      8
      9

使用循环时没有太大的区别,但打印循环时有区别!