显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

当前回答

其他一些答案提到Python 3消除了2.x的范围,并将2.x的xrange重命名为range。然而,除非您使用3.0或3.1(没有人应该使用),否则它实际上是一种不同的类型。

正如3.1文档所说:

范围对象的行为很少:它们只支持索引、迭代和len函数。

然而,在3.2+中,range是一个完整的序列,它支持扩展切片,以及collections.abc.sequence的所有方法,其语义与列表相同*

而且,至少在CPython和PyPy(目前仅有的两个3.2+实现)中,它还具有索引和计数方法以及in运算符的常量时间实现(只要只传递整数)。这意味着在r中写123456在3.2+中是合理的,而在2.7或3.1中则是一个糟糕的想法。


*issubclass(xrange,collections.Sequence)在2.6-2.7和3.0-3.1中返回True的事实是一个在3.2中修复的错误,而不是后端口。

其他回答

在这个简单的示例中,您将发现xrange优于range的优势:

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 4.49153590202 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 7.04547905922 seconds

在xrange的情况下,上面的示例没有反映出任何明显更好的内容。

现在看看下面的例子,与xrange相比,range真的很慢。

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 0.000764846801758 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer() 

print "time taken: ", (t2-t1)  # 2.78506207466 seconds

使用range,它已经创建了一个从0到100000000的列表(耗时),但xrange是一个生成器,它只根据需要生成数字,也就是说,如果迭代继续的话。

在Python-3中,范围功能的实现与Python-2中的xrange功能的实现相同,而他们在Python-3中取消了xrange

快乐编码!!

每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:

a=0
for i in range(1,100000):
    a=a+i

然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:

for i in list(range(1,100000)):
    a=a+i

它立即占用了大量内存。我确信。你可以自己试试。

如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。

对于范围(..)/xrange(..)的较小参数,差异减小:

$ python -m timeit "for i in xrange(10111):" " for k in range(100):" "  pass"
10 loops, best of 3: 59.4 msec per loop

$ python -m timeit "for i in xrange(10111):" " for k in xrange(100):" "  pass"
10 loops, best of 3: 46.9 msec per loop

在这种情况下,xrange(100)的效率仅提高约20%。

从帮助文档中。

Python 2.7.12

>>> print range.__doc__
range(stop) -> list of integers
range(start, stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3].  The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

>>> print xrange.__doc__
xrange(stop) -> xrange object
xrange(start, stop[, step]) -> xrange object

Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand.  For looping, this is 
slightly faster than range() and more memory efficient.

Python 3.5.2

>>> print(range.__doc__)
range(stop) -> range object
range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step.  range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted!  range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).

>>> print(xrange.__doc__)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'xrange' is not defined

差异显而易见。在Python2.x中,range返回一个列表,xrange返回一个可迭代的xrange对象。

在Python3.x中,range变为Python2.x的xrange,xrange被删除。

请参阅本文,了解range和xrange之间的差异:

引用:

range返回您所认为的结果:连续列表整数,具有以0开头的定义长度。xrange,返回一个“xrange对象”,它的行为非常像迭代器