显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
range会创建一个列表,所以如果您选择range(10000000),它会在内存中创建一个包含9999999个元素的列表。xrange是一个生成器,因此它是一个序列对象。
这是正确的,但在Python3中,range()将由Python2xrange()实现。如果您需要实际生成列表,则需要执行以下操作:
list(range(1,100))
其他回答
从帮助文档中。
Python 2.7.12
>>> print range.__doc__
range(stop) -> list of integers
range(start, stop[, step]) -> list of integers
Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.
>>> print xrange.__doc__
xrange(stop) -> xrange object
xrange(start, stop[, step]) -> xrange object
Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand. For looping, this is
slightly faster than range() and more memory efficient.
Python 3.5.2
>>> print(range.__doc__)
range(stop) -> range object
range(start, stop[, step]) -> range object
Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).
>>> print(xrange.__doc__)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'xrange' is not defined
差异显而易见。在Python2.x中,range返回一个列表,xrange返回一个可迭代的xrange对象。
在Python3.x中,range变为Python2.x的xrange,xrange被删除。
range(x,y)返回x和y之间的每个数字的列表,如果使用for循环,则range会变慢。事实上,范围的指数范围更大。range(x.y)将打印出x和y之间所有数字的列表
xrange(x,y)返回xrange,但如果使用for循环,xrange会更快。xrange的索引范围较小。xrange不仅会打印出xrange(x,y),还会保留其中的所有数字。
[In] range(1,10)
[Out] [1, 2, 3, 4, 5, 6, 7, 8, 9]
[In] xrange(1,10)
[Out] xrange(1,10)
如果您使用for循环,那么它会起作用
[In] for i in range(1,10):
print i
[Out] 1
2
3
4
5
6
7
8
9
[In] for i in xrange(1,10):
print i
[Out] 1
2
3
4
5
6
7
8
9
使用循环时没有太大的区别,但打印循环时有区别!
一定要花一些时间阅读图书馆参考资料。你越熟悉它,就越能更快地找到类似问题的答案。特别重要的是关于内置对象和类型的前几章。
xrange类型的优点是xrange对象总是使用相同数量的内存,无论它代表的范围大小如何。没有一致的性能优势。
另一种快速查找Python构造信息的方法是docstring和help函数:
print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)
其他一些答案提到Python 3消除了2.x的范围,并将2.x的xrange重命名为range。然而,除非您使用3.0或3.1(没有人应该使用),否则它实际上是一种不同的类型。
正如3.1文档所说:
范围对象的行为很少:它们只支持索引、迭代和len函数。
然而,在3.2+中,range是一个完整的序列,它支持扩展切片,以及collections.abc.sequence的所有方法,其语义与列表相同*
而且,至少在CPython和PyPy(目前仅有的两个3.2+实现)中,它还具有索引和计数方法以及in运算符的常量时间实现(只要只传递整数)。这意味着在r中写123456在3.2+中是合理的,而在2.7或3.1中则是一个糟糕的想法。
*issubclass(xrange,collections.Sequence)在2.6-2.7和3.0-3.1中返回True的事实是一个在3.2中修复的错误,而不是后端口。
对于范围(..)/xrange(..)的较小参数,差异减小:
$ python -m timeit "for i in xrange(10111):" " for k in range(100):" " pass"
10 loops, best of 3: 59.4 msec per loop
$ python -m timeit "for i in xrange(10111):" " for k in xrange(100):" " pass"
10 loops, best of 3: 46.9 msec per loop
在这种情况下,xrange(100)的效率仅提高约20%。