显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
range会创建一个列表,所以如果您选择range(10000000),它会在内存中创建一个包含9999999个元素的列表。xrange是一个生成器,因此它是一个序列对象。
这是正确的,但在Python3中,range()将由Python2xrange()实现。如果您需要实际生成列表,则需要执行以下操作:
list(range(1,100))
其他回答
此外,if do list(xrange(…))将等同于range(…)。
所以列表很慢。
而且xrange确实没有完全完成序列
这就是为什么它不是一个列表,而是一个xrange对象
python中的xrange()和range()的工作方式与用户类似,但当我们讨论如何使用这两个函数分配内存时,就会出现不同。
当我们使用range()时,我们为它正在生成的所有变量分配内存,因此不建议与要生成的大量变量一起使用。
另一方面,xrange()一次只能生成一个特定的值,并且只能与for循环一起使用,以打印所需的所有值。
当在一个循环中测试range和xrange时(我知道我应该使用timeit,但这是使用一个简单的列表理解示例从内存中快速删除的),我发现如下:
import time
for x in range(1, 10):
t = time.time()
[v*10 for v in range(1, 10000)]
print "range: %.4f" % ((time.time()-t)*100)
t = time.time()
[v*10 for v in xrange(1, 10000)]
print "xrange: %.4f" % ((time.time()-t)*100)
其给出:
$python range_tests.py
range: 0.4273
xrange: 0.3733
range: 0.3881
xrange: 0.3507
range: 0.3712
xrange: 0.3565
range: 0.4031
xrange: 0.3558
range: 0.3714
xrange: 0.3520
range: 0.3834
xrange: 0.3546
range: 0.3717
xrange: 0.3511
range: 0.3745
xrange: 0.3523
range: 0.3858
xrange: 0.3997 <- garbage collection?
或者,在for循环中使用xrange:
range: 0.4172
xrange: 0.3701
range: 0.3840
xrange: 0.3547
range: 0.3830
xrange: 0.3862 <- garbage collection?
range: 0.4019
xrange: 0.3532
range: 0.3738
xrange: 0.3726
range: 0.3762
xrange: 0.3533
range: 0.3710
xrange: 0.3509
range: 0.3738
xrange: 0.3512
range: 0.3703
xrange: 0.3509
我的代码段测试是否正确?对xrange的较慢实例有何评论?或者更好的例子:-)
range:-range将一次填充所有内容。这意味着范围中的每个数字都将占用内存。
xrange:xrange有点像生成器,当你想要数字的范围,但你不希望它们被存储时,它就会出现在图片中,就像你想使用for loop时一样。
请参阅本文,了解range和xrange之间的差异:
引用:
range返回您所认为的结果:连续列表整数,具有以0开头的定义长度。xrange,返回一个“xrange对象”,它的行为非常像迭代器