显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
记住,使用timeit模块测试哪一小段代码更快!
$ python -m timeit 'for i in range(1000000):' ' pass'
10 loops, best of 3: 90.5 msec per loop
$ python -m timeit 'for i in xrange(1000000):' ' pass'
10 loops, best of 3: 51.1 msec per loop
就我个人而言,我总是使用range(),除非我处理的是非常庞大的列表——正如你所看到的,从时间上看,对于一个百万条目的列表,额外的开销仅为0.04秒。正如Corey所指出的,在Python 3.0中,xrange()将消失,而range()无论如何都会给您带来不错的迭代器行为。
其他回答
Python 2.x中的range()
该函数本质上是Python2.x中可用的旧range()函数,并返回包含指定范围内元素的列表对象的实例。
然而,当使用一系列数字初始化列表时,这种实现效率太低。例如,对于范围(1000000)中的i,无论是在内存还是时间使用方面,都是一个非常昂贵的命令,因为它需要将这个列表存储到内存中。
Python 3.x中的range()和Python 2.x中的xrange()
Python3.x引入了一个新的range()实现(而新的实现已经在Python2.x中通过xrange()函数提供)。
range()利用了一种称为惰性求值的策略。新的实现没有在范围内创建一个庞大的元素列表,而是引入了类范围,这是一个轻量级对象,表示给定范围内所需的元素,而没有将它们显式存储在内存中(这听起来可能像生成器,但惰性求值的概念不同)。
例如,考虑以下内容:
# Python 2.x
>>> a = range(10)
>>> type(a)
<type 'list'>
>>> b = xrange(10)
>>> type(b)
<type 'xrange'>
and
# Python 3.x
>>> a = range(10)
>>> type(a)
<class 'range'>
从帮助文档中。
Python 2.7.12
>>> print range.__doc__
range(stop) -> list of integers
range(start, stop[, step]) -> list of integers
Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.
>>> print xrange.__doc__
xrange(stop) -> xrange object
xrange(start, stop[, step]) -> xrange object
Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand. For looping, this is
slightly faster than range() and more memory efficient.
Python 3.5.2
>>> print(range.__doc__)
range(stop) -> range object
range(start, stop[, step]) -> range object
Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).
>>> print(xrange.__doc__)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'xrange' is not defined
差异显而易见。在Python2.x中,range返回一个列表,xrange返回一个可迭代的xrange对象。
在Python3.x中,range变为Python2.x的xrange,xrange被删除。
Range返回一个列表,而xrange返回一个xrange对象,该对象占用相同的内存,而不考虑范围大小,因为在这种情况下,每次迭代只生成一个元素并可用,而在使用Range的情况下,所有元素都会一次生成并在内存中可用。
range(x,y)返回x和y之间的每个数字的列表,如果使用for循环,则range会变慢。事实上,范围的指数范围更大。range(x.y)将打印出x和y之间所有数字的列表
xrange(x,y)返回xrange,但如果使用for循环,xrange会更快。xrange的索引范围较小。xrange不仅会打印出xrange(x,y),还会保留其中的所有数字。
[In] range(1,10)
[Out] [1, 2, 3, 4, 5, 6, 7, 8, 9]
[In] xrange(1,10)
[Out] xrange(1,10)
如果您使用for循环,那么它会起作用
[In] for i in range(1,10):
print i
[Out] 1
2
3
4
5
6
7
8
9
[In] for i in xrange(1,10):
print i
[Out] 1
2
3
4
5
6
7
8
9
使用循环时没有太大的区别,但打印循环时有区别!
xrange返回一个迭代器,每次只在内存中保留一个数字。范围将整个数字列表保存在内存中。