显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

当前回答

记住,使用timeit模块测试哪一小段代码更快!

$ python -m timeit 'for i in range(1000000):' ' pass'
10 loops, best of 3: 90.5 msec per loop
$ python -m timeit 'for i in xrange(1000000):' ' pass'
10 loops, best of 3: 51.1 msec per loop

就我个人而言,我总是使用range(),除非我处理的是非常庞大的列表——正如你所看到的,从时间上看,对于一个百万条目的列表,额外的开销仅为0.04秒。正如Corey所指出的,在Python 3.0中,xrange()将消失,而range()无论如何都会给您带来不错的迭代器行为。

其他回答

当在一个循环中测试range和xrange时(我知道我应该使用timeit,但这是使用一个简单的列表理解示例从内存中快速删除的),我发现如下:

import time

for x in range(1, 10):

    t = time.time()
    [v*10 for v in range(1, 10000)]
    print "range:  %.4f" % ((time.time()-t)*100)

    t = time.time()
    [v*10 for v in xrange(1, 10000)]
    print "xrange: %.4f" % ((time.time()-t)*100)

其给出:

$python range_tests.py
range:  0.4273
xrange: 0.3733
range:  0.3881
xrange: 0.3507
range:  0.3712
xrange: 0.3565
range:  0.4031
xrange: 0.3558
range:  0.3714
xrange: 0.3520
range:  0.3834
xrange: 0.3546
range:  0.3717
xrange: 0.3511
range:  0.3745
xrange: 0.3523
range:  0.3858
xrange: 0.3997 <- garbage collection?

或者,在for循环中使用xrange:

range:  0.4172
xrange: 0.3701
range:  0.3840
xrange: 0.3547
range:  0.3830
xrange: 0.3862 <- garbage collection?
range:  0.4019
xrange: 0.3532
range:  0.3738
xrange: 0.3726
range:  0.3762
xrange: 0.3533
range:  0.3710
xrange: 0.3509
range:  0.3738
xrange: 0.3512
range:  0.3703
xrange: 0.3509

我的代码段测试是否正确?对xrange的较慢实例有何评论?或者更好的例子:-)

每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:

a=0
for i in range(1,100000):
    a=a+i

然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:

for i in list(range(1,100000)):
    a=a+i

它立即占用了大量内存。我确信。你可以自己试试。

如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。

range生成整个列表并返回它。xrange不——它根据需要生成列表中的数字。

一定要花一些时间阅读图书馆参考资料。你越熟悉它,就越能更快地找到类似问题的答案。特别重要的是关于内置对象和类型的前几章。

xrange类型的优点是xrange对象总是使用相同数量的内存,无论它代表的范围大小如何。没有一致的性能优势。

另一种快速查找Python构造信息的方法是docstring和help函数:

print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)

python中的xrange()和range()的工作方式与用户类似,但当我们讨论如何使用这两个函数分配内存时,就会出现不同。

当我们使用range()时,我们为它正在生成的所有变量分配内存,因此不建议与要生成的大量变量一起使用。

另一方面,xrange()一次只能生成一个特定的值,并且只能与for循环一起使用,以打印所需的所有值。