显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
记住,使用timeit模块测试哪一小段代码更快!
$ python -m timeit 'for i in range(1000000):' ' pass'
10 loops, best of 3: 90.5 msec per loop
$ python -m timeit 'for i in xrange(1000000):' ' pass'
10 loops, best of 3: 51.1 msec per loop
就我个人而言,我总是使用range(),除非我处理的是非常庞大的列表——正如你所看到的,从时间上看,对于一个百万条目的列表,额外的开销仅为0.04秒。正如Corey所指出的,在Python 3.0中,xrange()将消失,而range()无论如何都会给您带来不错的迭代器行为。
其他回答
range:-range将一次填充所有内容。这意味着范围中的每个数字都将占用内存。
xrange:xrange有点像生成器,当你想要数字的范围,但你不希望它们被存储时,它就会出现在图片中,就像你想使用for loop时一样。
在这个简单的示例中,您将发现xrange优于range的优势:
import timeit
t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
pass
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 4.49153590202 seconds
t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
pass
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 7.04547905922 seconds
在xrange的情况下,上面的示例没有反映出任何明显更好的内容。
现在看看下面的例子,与xrange相比,range真的很慢。
import timeit
t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
if i == 10000:
break
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 0.000764846801758 seconds
t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
if i == 10000:
break
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 2.78506207466 seconds
使用range,它已经创建了一个从0到100000000的列表(耗时),但xrange是一个生成器,它只根据需要生成数字,也就是说,如果迭代继续的话。
在Python-3中,范围功能的实现与Python-2中的xrange功能的实现相同,而他们在Python-3中取消了xrange
快乐编码!!
xrange返回一个迭代器,每次只在内存中保留一个数字。范围将整个数字列表保存在内存中。
请参阅本文,了解range和xrange之间的差异:
引用:
range返回您所认为的结果:连续列表整数,具有以0开头的定义长度。xrange,返回一个“xrange对象”,它的行为非常像迭代器
在python 2.x中
range(x)返回一个列表,该列表是在内存中用x元素创建的。
>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]
xrange(x)返回一个xrange对象,它是一个生成器obj,可以根据需要生成数字。它们是在for循环(惰性评估)期间计算的。
对于循环,这比range()稍快,内存效率更高。
>>> b = xrange(5)
>>> b
xrange(5)