显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

当前回答

每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:

a=0
for i in range(1,100000):
    a=a+i

然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:

for i in list(range(1,100000)):
    a=a+i

它立即占用了大量内存。我确信。你可以自己试试。

如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。

其他回答

记住,使用timeit模块测试哪一小段代码更快!

$ python -m timeit 'for i in range(1000000):' ' pass'
10 loops, best of 3: 90.5 msec per loop
$ python -m timeit 'for i in xrange(1000000):' ' pass'
10 loops, best of 3: 51.1 msec per loop

就我个人而言,我总是使用range(),除非我处理的是非常庞大的列表——正如你所看到的,从时间上看,对于一个百万条目的列表,额外的开销仅为0.04秒。正如Corey所指出的,在Python 3.0中,xrange()将消失,而range()无论如何都会给您带来不错的迭代器行为。

一定要花一些时间阅读图书馆参考资料。你越熟悉它,就越能更快地找到类似问题的答案。特别重要的是关于内置对象和类型的前几章。

xrange类型的优点是xrange对象总是使用相同数量的内存,无论它代表的范围大小如何。没有一致的性能优势。

另一种快速查找Python构造信息的方法是docstring和help函数:

print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)

range:-range将一次填充所有内容。这意味着范围中的每个数字都将占用内存。

xrange:xrange有点像生成器,当你想要数字的范围,但你不希望它们被存储时,它就会出现在图片中,就像你想使用for loop时一样。

xrange只存储范围参数并根据需要生成数字。然而,Python的C实现目前将其args限制为C longs:

xrange(2**32-1, 2**32+1)  # When long is 32 bits, OverflowError: Python int too large to convert to C long
range(2**32-1, 2**32+1)   # OK --> [4294967295L, 4294967296L]

注意,在Python3.0中只有范围,它的行为类似于2.xxrange,但没有对最小和最大端点的限制。

这是出于优化的原因。

range()将创建从开始到结束的值列表(示例中为0..20)。这将成为非常大范围的昂贵操作。

另一方面,xrange()更为优化。它只会在需要时(通过xrange序列对象)计算下一个值,不会像range()那样创建所有值的列表。