显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

当前回答

Python 2.x中的range()

该函数本质上是Python2.x中可用的旧range()函数,并返回包含指定范围内元素的列表对象的实例。

然而,当使用一系列数字初始化列表时,这种实现效率太低。例如,对于范围(1000000)中的i,无论是在内存还是时间使用方面,都是一个非常昂贵的命令,因为它需要将这个列表存储到内存中。


Python 3.x中的range()和Python 2.x中的xrange()

Python3.x引入了一个新的range()实现(而新的实现已经在Python2.x中通过xrange()函数提供)。

range()利用了一种称为惰性求值的策略。新的实现没有在范围内创建一个庞大的元素列表,而是引入了类范围,这是一个轻量级对象,表示给定范围内所需的元素,而没有将它们显式存储在内存中(这听起来可能像生成器,但惰性求值的概念不同)。


例如,考虑以下内容:

# Python 2.x
>>> a = range(10)
>>> type(a)
<type 'list'>
>>> b = xrange(10)
>>> type(b)
<type 'xrange'>

and

# Python 3.x
>>> a = range(10)
>>> type(a)
<class 'range'>

其他回答

当在一个循环中测试range和xrange时(我知道我应该使用timeit,但这是使用一个简单的列表理解示例从内存中快速删除的),我发现如下:

import time

for x in range(1, 10):

    t = time.time()
    [v*10 for v in range(1, 10000)]
    print "range:  %.4f" % ((time.time()-t)*100)

    t = time.time()
    [v*10 for v in xrange(1, 10000)]
    print "xrange: %.4f" % ((time.time()-t)*100)

其给出:

$python range_tests.py
range:  0.4273
xrange: 0.3733
range:  0.3881
xrange: 0.3507
range:  0.3712
xrange: 0.3565
range:  0.4031
xrange: 0.3558
range:  0.3714
xrange: 0.3520
range:  0.3834
xrange: 0.3546
range:  0.3717
xrange: 0.3511
range:  0.3745
xrange: 0.3523
range:  0.3858
xrange: 0.3997 <- garbage collection?

或者,在for循环中使用xrange:

range:  0.4172
xrange: 0.3701
range:  0.3840
xrange: 0.3547
range:  0.3830
xrange: 0.3862 <- garbage collection?
range:  0.4019
xrange: 0.3532
range:  0.3738
xrange: 0.3726
range:  0.3762
xrange: 0.3533
range:  0.3710
xrange: 0.3509
range:  0.3738
xrange: 0.3512
range:  0.3703
xrange: 0.3509

我的代码段测试是否正确?对xrange的较慢实例有何评论?或者更好的例子:-)

xrange使用迭代器(动态生成值),range返回一个列表。

其他一些答案提到Python 3消除了2.x的范围,并将2.x的xrange重命名为range。然而,除非您使用3.0或3.1(没有人应该使用),否则它实际上是一种不同的类型。

正如3.1文档所说:

范围对象的行为很少:它们只支持索引、迭代和len函数。

然而,在3.2+中,range是一个完整的序列,它支持扩展切片,以及collections.abc.sequence的所有方法,其语义与列表相同*

而且,至少在CPython和PyPy(目前仅有的两个3.2+实现)中,它还具有索引和计数方法以及in运算符的常量时间实现(只要只传递整数)。这意味着在r中写123456在3.2+中是合理的,而在2.7或3.1中则是一个糟糕的想法。


*issubclass(xrange,collections.Sequence)在2.6-2.7和3.0-3.1中返回True的事实是一个在3.2中修复的错误,而不是后端口。

python中的xrange()和range()的工作方式与用户类似,但当我们讨论如何使用这两个函数分配内存时,就会出现不同。

当我们使用range()时,我们为它正在生成的所有变量分配内存,因此不建议与要生成的大量变量一起使用。

另一方面,xrange()一次只能生成一个特定的值,并且只能与for循环一起使用,以打印所需的所有值。

range创建一个列表,所以如果您使用range(10000000),它将在内存中创建一个包含10000000个元素的列表。xrange是一个生成器,因此它的求值是惰性的。

这给您带来了两个好处:

您可以在不出现MemoryError的情况下迭代更长的列表。由于它懒洋洋地解析每个数字,如果您提前停止迭代,就不会浪费时间创建整个列表。