我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。


当前回答

DFS:

list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
  currentnode = nodes_to_visit.take_first();
  nodes_to_visit.prepend( currentnode.children );
  //do something
}

BFS:

list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
  currentnode = nodes_to_visit.take_first();
  nodes_to_visit.append( currentnode.children );
  //do something
}

两者的对称相当酷。

更新:如前所述,take_first()删除并返回列表中的第一个元素。

其他回答

使用ES6生成器的非递归DFS

class Node {
  constructor(name, childNodes) {
    this.name = name;
    this.childNodes = childNodes;
    this.visited = false;
  }
}

function *dfs(s) {
  let stack = [];
  stack.push(s);
  stackLoop: while (stack.length) {
    let u = stack[stack.length - 1]; // peek
    if (!u.visited) {
      u.visited = true; // grey - visited
      yield u;
    }

    for (let v of u.childNodes) {
      if (!v.visited) {
        stack.push(v);
        continue stackLoop;
      }
    }

    stack.pop(); // black - all reachable descendants were processed 
  }    
}

它与典型的非递归DFS不同,可以很容易地检测给定节点的所有可达后代何时被处理,并维护列表/堆栈中的当前路径。

如果你有指向父节点的指针,你可以在没有额外内存的情况下完成。

def dfs(root):
    node = root
    while True:
        visit(node)
        if node.first_child:
            node = node.first_child      # walk down
        else:
            while not node.next_sibling:
                if node is root:
                    return
                node = node.parent       # walk up ...
            node = node.next_sibling     # ... and right

注意,如果子节点存储为数组而不是通过兄弟指针,那么下一个兄弟节点可以通过以下方式找到:

def next_sibling(node):
    try:
        i =    node.parent.child_nodes.index(node)
        return node.parent.child_nodes[i+1]
    except (IndexError, AttributeError):
        return None

虽然“使用堆栈”可能是人为的面试问题的答案,但实际上,它只是显式地做递归程序在幕后所做的事情。

递归使用程序内置堆栈。当你调用一个函数时,它将函数的参数推入堆栈,当函数返回时,它通过弹出程序堆栈来执行。

Java中的DFS迭代:

//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
    if (root == null)
        return false;
    Stack<Node> _stack = new Stack<Node>();
    _stack.push(root);
    while (_stack.size() > 0) {
        Node temp = _stack.peek();
        if (temp.data == target)
            return true;
        if (temp.left != null)
            _stack.push(temp.left);
        else if (temp.right != null)
            _stack.push(temp.right);
        else
            _stack.pop();
    }
    return false;
}

使用堆栈来跟踪节点

Stack<Node> s;

s.prepend(tree.head);

while(!s.empty) {
    Node n = s.poll_front // gets first node

    // do something with q?

    for each child of n: s.prepend(child)

}