是否有一种方法可以方便地在Python中定义类c结构?我厌倦了写这样的东西:

class MyStruct():
    def __init__(self, field1, field2, field3):
        self.field1 = field1
        self.field2 = field2
        self.field3 = field3

当前回答

我写了一个装饰器,你可以在任何方法上使用它,这样所有传入的参数,或任何默认值,都被分配给实例。

def argumentsToAttributes(method):
    argumentNames = method.func_code.co_varnames[1:]

    # Generate a dictionary of default values:
    defaultsDict = {}
    defaults = method.func_defaults if method.func_defaults else ()
    for i, default in enumerate(defaults, start = len(argumentNames) - len(defaults)):
        defaultsDict[argumentNames[i]] = default

    def newMethod(self, *args, **kwargs):
        # Use the positional arguments.
        for name, value in zip(argumentNames, args):
            setattr(self, name, value)

        # Add the key word arguments. If anything is missing, use the default.
        for name in argumentNames[len(args):]:
            setattr(self, name, kwargs.get(name, defaultsDict[name]))

        # Run whatever else the method needs to do.
        method(self, *args, **kwargs)

    return newMethod

快速演示一下。注意,我使用一个位置参数a,使用默认值b,和一个命名参数c。然后我打印所有3个引用self,以显示它们在方法输入之前已正确分配。

class A(object):
    @argumentsToAttributes
    def __init__(self, a, b = 'Invisible', c = 'Hello'):
        print(self.a)
        print(self.b)
        print(self.c)

A('Why', c = 'Nothing')

注意,我的装饰器应该适用于任何方法,而不仅仅是__init__。

其他回答

有一个python包正是用于此目的。看到cstruct2py

cstruct2py是一个纯python库,用于从C代码生成python类,并使用它们来打包和解包数据。该库可以解析C头文件(结构体、联合、枚举和数组声明),并在python中模拟它们。生成的python类可以解析和打包数据。

例如:

typedef struct {
  int x;
  int y;
} Point;

after generating pythonic class...
p = Point(x=0x1234, y=0x5678)
p.packed == "\x34\x12\x00\x00\x78\x56\x00\x00"

如何使用

首先,我们需要生成python结构体:

import cstruct2py
parser = cstruct2py.c2py.Parser()
parser.parse_file('examples/example.h')

现在我们可以从C代码中导入所有的名称:

parser.update_globals(globals())

我们也可以直接这样做:

A = parser.parse_string('struct A { int x; int y;};')

使用C代码中的类型和定义

a = A()
a.x = 45
print a
buf = a.packed
b = A(buf)
print b
c = A('aaaa11112222', 2)
print c
print repr(c)

输出将是:

{'x':0x2d, 'y':0x0}
{'x':0x2d, 'y':0x0}
{'x':0x31316161, 'y':0x32323131}
A('aa111122', x=0x31316161, y=0x32323131)

克隆

对于克隆cstruct2py运行:

git clone https://github.com/st0ky/cstruct2py.git --recursive

就我个人而言,我也喜欢这种变体。它扩展了@dF的答案。

class struct:
    def __init__(self, *sequential, **named):
        fields = dict(zip(sequential, [None]*len(sequential)), **named)
        self.__dict__.update(fields)
    def __repr__(self):
        return str(self.__dict__)

它支持两种初始化模式(可以混合使用):

# Struct with field1, field2, field3 that are initialized to None.
mystruct1 = struct("field1", "field2", "field3") 
# Struct with field1, field2, field3 that are initialized according to arguments.
mystruct2 = struct(field1=1, field2=2, field3=3)

而且,它打印得更好:

print(mystruct2)
# Prints: {'field3': 3, 'field1': 1, 'field2': 2}

如果您没有3.7的@dataclass,并且需要可变性,那么下面的代码可能适合您。它是非常自文档化和ide友好的(自动完成),防止编写两次内容,易于扩展,并且非常简单地测试所有实例变量都被完全初始化:

class Params():
    def __init__(self):
        self.var1 : int = None
        self.var2 : str = None

    def are_all_defined(self):
        for key, value in self.__dict__.items():
            assert (value is not None), "instance variable {} is still None".format(key)
        return True


params = Params()
params.var1 = 2
params.var2 = 'hello'
assert(params.are_all_defined)

dF:太酷了……我没有 我知道我可以访问的领域 一个使用字典的类。 马克:我希望我遇到的情况 这正是我需要一个元组的时候 但没有什么比 字典。

你可以使用字典访问类的字段,因为类的字段、它的方法和它的所有属性都是用字典存储在内部的(至少在CPython中是这样)。

...这就引出了你的第二个评论。相信Python字典是“沉重的”是一个非常非Python主义的概念。读这样的评论简直要了我的Python禅。这可不太好。

您可以看到,当您声明一个类时,实际上是在为一个字典创建一个相当复杂的包装器——因此,如果有的话,您比使用一个简单的字典增加了更多的开销。顺便说一下,这种开销在任何情况下都是没有意义的。如果您正在处理性能关键的应用程序,请使用C或其他语言。

一本字典怎么样?

就像这样:

myStruct = {'field1': 'some val', 'field2': 'some val'}

然后你可以使用这个来操作值:

print myStruct['field1']
myStruct['field2'] = 'some other values'

值不一定是字符串。它们可以是其他任何物体。