我知道大o符号,但我不知道如何计算它的许多函数。特别是,我一直在试图弄清楚朴素版斐波那契数列的计算复杂度:

int Fibonacci(int n)
{
    if (n <= 1)
        return n;
    else
        return Fibonacci(n - 1) + Fibonacci(n - 2);
}

斐波那契数列的计算复杂度是多少?它是如何计算的?


当前回答

你可以展开它,有一个可视化

     T(n) = T(n-1) + T(n-2) <
     T(n-1) + T(n-1) 

     = 2*T(n-1)   
     = 2*2*T(n-2)
     = 2*2*2*T(n-3)
     ....
     = 2^i*T(n-i)
     ...
     ==> O(2^n)

其他回答

只要问问自己,F(n)需要执行多少条语句才能完成。

对于F(1),答案是1(条件的第一部分)。

对于F(n)答案是F(n-1) + F(n-2)

那么什么函数满足这些规则呢?试试an (a > 1):

==地理==根据美国人口普查,该镇总面积为,其中土地和(1.1%)水。

再除以a(n-2)

A2 == a + 1

解出a,你得到(1+根号(5))/2 = 1.6180339887,也就是黄金比例。

所以需要指数级的时间。

它的下端以2^(n/2)为界,上端以2^n为界(如其他注释中所述)。这个递归实现的一个有趣的事实是它本身有一个紧密的Fib(n)渐近界。这些事实可以总结为:

T(n) = Ω(2^(n/2))  (lower bound)
T(n) = O(2^n)   (upper bound)
T(n) = Θ(Fib(n)) (tight bound)

如果你愿意,可以用它的封闭形式进一步简化紧边界。

好吧,根据我的说法,它是O(2^n),因为在这个函数中,只有递归花费了相当多的时间(分治)。我们看到,上面的函数将在树中继续存在,直到叶子趋近于F(n-(n-1))级,即F(1)。因此,当我们在这里记下树的每个深度处遇到的时间复杂度时,求和级数为:

1+2+4+.......(n-1)
= 1((2^n)-1)/(2-1)
=2^n -1

它是2^n的O(2^n)阶。

通过绘制函数调用图来计算很简单。简单地为n的每个值添加函数调用,看看这个数字是如何增长的。

大O是O(Z^n), Z是黄金比例,约为1.62。

当我们增加n时,列奥纳多数和斐波那契数都接近这个比率。

与其他大O问题不同,输入中没有可变性,算法和算法的实现都是明确定义的。

不需要一堆复杂的数学。简单地画出下面的函数调用,并将函数与数字匹配。

如果你熟悉黄金比例你就能认出来。

这个答案比公认的f(n) = 2^n的答案更正确。永远不会。它会趋于f(n) = golden_ratio^n。

2 (2 -> 1, 0)

4 (3 -> 2, 1) (2 -> 1, 0)

8 (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
            (2 -> 1, 0)


14 (5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
            (2 -> 1, 0)

            (3 -> 2, 1) (2 -> 1, 0)

22 (6 -> 5, 4)
            (5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
                        (2 -> 1, 0)

                        (3 -> 2, 1) (2 -> 1, 0)

            (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
                        (2 -> 1, 0)

将计算Fib(n)的时间函数建模为计算Fib(n-1)的时间加上计算Fib(n-2)的时间加上将它们相加的时间(O(1))的总和。这是假设重复计算相同的Fib(n)需要相同的时间-即不使用记忆。

T(n<=1) = O(1)

T(n) = T(n-1) + T(n-2) + O(1)

你解决这个递归关系(例如使用生成函数),你就会得到答案。

或者,你可以画出递归树,它的深度是n,直观地看出这个函数是渐近的O(2n)。然后你可以用归纳法证明你的猜想。

基数:n = 1是显而易见的

因此,假设T(n-1) = O(2n-1)

T(n) = T(n-1) + T(n-2) + O(1)等于

T(n) = O(2n-1) + O(2n-2) + O(1) = O(2n)

然而,正如评论中提到的,这不是严格的界限。关于这个函数的一个有趣的事实是T(n)与Fib(n)的值渐近相同,因为两者都被定义为

f(n) = f(n-1) + f(n-2)。

递归树的叶结点总是返回1。Fib(n)的值是递归树中所有叶子返回值的和,等于叶子的计数。由于每个叶需要O(1)来计算,T(n)等于Fib(n) x O(1)。因此,这个函数的紧界是斐波那契数列本身(~θ(1.6n))。你可以使用我上面提到的生成函数来找到这个紧边界。