我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:
class AttributeDict(dict):
def __getattr__(self, attr):
return self[attr]
def __setattr__(self, attr, value):
self[attr] = value
然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?
让我发布另一个实现,它基于Kinvais的答案,但集成了http://databio.org/posts/python_AttributeDict.html中提出的AttributeDict的思想。
这个版本的优点是它也适用于嵌套字典:
class AttrDict(dict):
"""
A class to convert a nested Dictionary into an object with key-values
that are accessible using attribute notation (AttrDict.attribute) instead of
key notation (Dict["key"]). This class recursively sets Dicts to objects,
allowing you to recurse down nested dicts (like: AttrDict.attr.attr)
"""
# Inspired by:
# http://stackoverflow.com/a/14620633/1551810
# http://databio.org/posts/python_AttributeDict.html
def __init__(self, iterable, **kwargs):
super(AttrDict, self).__init__(iterable, **kwargs)
for key, value in iterable.items():
if isinstance(value, dict):
self.__dict__[key] = AttrDict(value)
else:
self.__dict__[key] = value
下面是一个使用内置collection .namedtuple的不可变记录的简短示例:
def record(name, d):
return namedtuple(name, d.keys())(**d)
还有一个用法示例:
rec = record('Model', {
'train_op': train_op,
'loss': loss,
})
print rec.loss(..)
更新- 2020年
自从这个问题在大约十年前被提出以来,Python本身已经发生了相当大的变化。
虽然我最初回答中的方法在某些情况下仍然有效,(例如,遗留项目坚持使用旧版本的Python,以及在某些情况下,您确实需要处理具有非常动态字符串键的字典),但我认为一般来说,Python 3.7中引入的数据类是AttrDict绝大多数用例的明显/正确的解决方案。
原来的答案
最好的方法是:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
一些优点:
它真的有用!
没有字典类方法被遮蔽(例如.keys()工作得很好。除非-当然-你给它们赋值,见下文)
属性和项总是同步的
试图将不存在的key作为属性访问会正确地引发AttributeError而不是KeyError
支持[Tab]自动补全(例如在jupyter和ipython中)
缺点:
如果.keys()等方法被传入的数据覆盖,它们就不能正常工作
在Python < 2.7.4 / Python3 < 3.2.3中导致内存泄漏
Pylint因为E1123(意外关键字参数)和E1103(可能没有成员)而抓狂
对于外行来说,这似乎是纯粹的魔法。
简要解释一下它是如何工作的
All python objects internally store their attributes in a dictionary that is named __dict__.
There is no requirement that the internal dictionary __dict__ would need to be "just a plain dict", so we can assign any subclass of dict() to the internal dictionary.
In our case we simply assign the AttrDict() instance we are instantiating (as we are in __init__).
By calling super()'s __init__() method we made sure that it (already) behaves exactly like a dictionary, since that function calls all the dictionary instantiation code.
Python没有开箱即用提供此功能的原因之一
正如“cons”列表中所指出的,这将存储键的名称空间(可能来自任意和/或不受信任的数据!)与内置dict方法属性的名称空间结合在一起。例如:
d = AttrDict()
d.update({'items':["jacket", "necktie", "trousers"]})
for k, v in d.items(): # TypeError: 'list' object is not callable
print "Never reached!"
以这种方式访问字典键的注意事项和缺陷是什么?
正如@Henry所指出的,在dict中不能使用点访问的一个原因是,它将dict键名限制为python有效变量,从而限制了所有可能的名称。
下面是一些例子,说明为什么在给定字典d的情况下,点点访问通常没有帮助:
有效性
以下属性在Python中是无效的:
d.1_foo # enumerated names
d./bar # path names
d.21.7, d.12:30 # decimals, time
d."" # empty strings
d.john doe, d.denny's # spaces, misc punctuation
d.3 * x # expressions
风格
PEP8约定将对属性命名施加软约束:
A.保留关键字(或内置函数)名称:
d.in
d.False, d.True
d.max, d.min
d.sum
d.id
如果函数参数的名称与保留关键字冲突,通常最好在后面添加一个下划线…
B.方法和变量名的大小写规则:
变量名遵循与函数名相同的约定。
d.Firstname
d.Country
使用函数命名规则:小写字母,单词之间用下划线分隔,以提高可读性。
有时,在pandas这样的库中会出现这些问题,这些库允许按名称点访问DataFrame列。解决命名限制的默认机制也是数组表示法——括号中的字符串。
如果这些约束不适用于您的用例,那么在点访问数据结构上有几个选项。
解决方案是:
DICT_RESERVED_KEYS = vars(dict).keys()
class SmartDict(dict):
"""
A Dict which is accessible via attribute dot notation
"""
def __init__(self, *args, **kwargs):
"""
:param args: multiple dicts ({}, {}, ..)
:param kwargs: arbitrary keys='value'
If ``keyerror=False`` is passed then not found attributes will
always return None.
"""
super(SmartDict, self).__init__()
self['__keyerror'] = kwargs.pop('keyerror', True)
[self.update(arg) for arg in args if isinstance(arg, dict)]
self.update(kwargs)
def __getattr__(self, attr):
if attr not in DICT_RESERVED_KEYS:
if self['__keyerror']:
return self[attr]
else:
return self.get(attr)
return getattr(self, attr)
def __setattr__(self, key, value):
if key in DICT_RESERVED_KEYS:
raise AttributeError("You cannot set a reserved name as attribute")
self.__setitem__(key, value)
def __copy__(self):
return self.__class__(self)
def copy(self):
return self.__copy__()