我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:

class AttributeDict(dict):
    def __getattr__(self, attr):
        return self[attr]
    def __setattr__(self, attr, value):
        self[attr] = value

然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?


当前回答

一般情况下它不成立。不是所有有效的dict键都有可寻址的属性(“键”)。所以,你要小心。

Python对象基本上都是字典。所以我怀疑会有什么表现或其他惩罚。

其他回答

下面是一个使用内置collection .namedtuple的不可变记录的简短示例:

def record(name, d):
    return namedtuple(name, d.keys())(**d)

还有一个用法示例:

rec = record('Model', {
    'train_op': train_op,
    'loss': loss,
})

print rec.loss(..)

元组可以使用字典键。如何在构造中访问元组?

另外,namedtuple是一种方便的结构,可以通过属性访问提供值。

以这种方式访问字典键的注意事项和缺陷是什么?

正如@Henry所指出的,在dict中不能使用点访问的一个原因是,它将dict键名限制为python有效变量,从而限制了所有可能的名称。

下面是一些例子,说明为什么在给定字典d的情况下,点点访问通常没有帮助:

有效性

以下属性在Python中是无效的:

d.1_foo                           # enumerated names
d./bar                            # path names
d.21.7, d.12:30                   # decimals, time
d.""                              # empty strings
d.john doe, d.denny's             # spaces, misc punctuation 
d.3 * x                           # expressions  

风格

PEP8约定将对属性命名施加软约束:

A.保留关键字(或内置函数)名称:

d.in
d.False, d.True
d.max, d.min
d.sum
d.id

如果函数参数的名称与保留关键字冲突,通常最好在后面添加一个下划线…

B.方法和变量名的大小写规则:

变量名遵循与函数名相同的约定。

d.Firstname
d.Country

使用函数命名规则:小写字母,单词之间用下划线分隔,以提高可读性。


有时,在pandas这样的库中会出现这些问题,这些库允许按名称点访问DataFrame列。解决命名限制的默认机制也是数组表示法——括号中的字符串。

如果这些约束不适用于您的用例,那么在点访问数据结构上有几个选项。

我根据这个线程的输入创建了这个。我需要使用odect,所以我必须覆盖get和设置attr。我认为这应该适用于大多数特殊用途。

用法如下:

# Create an ordered dict normally...
>>> od = OrderedAttrDict()
>>> od["a"] = 1
>>> od["b"] = 2
>>> od
OrderedAttrDict([('a', 1), ('b', 2)])

# Get and set data using attribute access...
>>> od.a
1
>>> od.b = 20
>>> od
OrderedAttrDict([('a', 1), ('b', 20)])

# Setting a NEW attribute only creates it on the instance, not the dict...
>>> od.c = 8
>>> od
OrderedAttrDict([('a', 1), ('b', 20)])
>>> od.c
8

类:

class OrderedAttrDict(odict.OrderedDict):
    """
    Constructs an odict.OrderedDict with attribute access to data.

    Setting a NEW attribute only creates it on the instance, not the dict.
    Setting an attribute that is a key in the data will set the dict data but 
    will not create a new instance attribute
    """
    def __getattr__(self, attr):
        """
        Try to get the data. If attr is not a key, fall-back and get the attr
        """
        if self.has_key(attr):
            return super(OrderedAttrDict, self).__getitem__(attr)
        else:
            return super(OrderedAttrDict, self).__getattr__(attr)


    def __setattr__(self, attr, value):
        """
        Try to set the data. If attr is not a key, fall-back and set the attr
        """
        if self.has_key(attr):
            super(OrderedAttrDict, self).__setitem__(attr, value)
        else:
            super(OrderedAttrDict, self).__setattr__(attr, value)

这是一个非常酷的模式,已经在线程中提到了,但如果你只是想把字典转换成一个在IDE中使用自动完成的对象,等等:

class ObjectFromDict(object):
    def __init__(self, d):
        self.__dict__ = d

没有必要自己写 Setattr()和getattr()已经存在。

类对象的优势可能在类定义和继承中发挥作用。