到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?
对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。
到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?
对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。
当前回答
有一些很好的工具。下面是一些Java的摘要。
一些好的静态分析工具包括FindBugs(提供了一些有用的提示)、JLint、Java Pathfinder (JPF & JPF2)和Bogor。
multithreaddtc是一个非常好的动态分析工具(集成到JUnit中),您必须在其中设置自己的测试用例。
IBM研究院的竞赛很有趣。它通过插入各种线程修改行为(例如sleep & yield)来检测你的代码,试图随机发现错误。
SPIN是对Java(和其他)组件建模的一个非常酷的工具,但是您需要一些有用的框架。它很难使用,但如果你知道如何使用它,它是非常强大的。相当多的工具在底层使用SPIN。
multithreaddtc可能是最主流的,但是上面列出的一些静态分析工具绝对值得一看。
其他回答
Pete Goodliffe有一个关于线程代码单元测试的系列。
是很困难的。我采用了更简单的方法,尽量将线程代码从实际测试中抽象出来。皮特确实提到了我分手的方式是错误的但我要么是正确的,要么就是我很幸运。
对于Java,请参阅JCIP的第12章。有一些具体的例子,可以编写确定性的多线程单元测试,以至少测试并发代码的正确性和不变量。
用单元测试“证明”线程安全要危险得多。我相信在各种平台/配置上进行自动化集成测试会更好。
这个问题发布已经有一段时间了,但仍然没有答案…
Kleolb02的答案很好。我会试着讲得更详细一些。
有一种方法,我在c#代码中练习过。对于单元测试,您应该能够编写可重复的测试,这是多线程代码中的最大挑战。因此,我的回答旨在将异步代码强制到同步工作的测试装置中。
这是Gerard Meszaros的书“xUnit测试模式”中的一个想法,被称为“Humble Object”(第695页):必须将核心逻辑代码和任何闻起来像异步代码的东西分开。这将产生一个用于核心逻辑的类,它同步地工作。
这将使您能够以同步方式测试核心逻辑代码。您可以绝对控制对核心逻辑进行调用的时间,因此可以进行可重复的测试。这就是分离核心逻辑和异步逻辑的好处。
这个核心逻辑需要由另一个类来包装,这个类负责异步接收对核心逻辑的调用,并将这些调用委托给核心逻辑。产品代码将只通过该类访问核心逻辑。因为这个类应该只委托调用,所以它是一个没有太多逻辑的非常“愚蠢”的类。因此,您可以将这个异步工作类的单元测试保持在最小值。
在此之上的任何测试(测试类之间的交互)都是组件测试。同样在这种情况下,如果你坚持使用“Humble Object”模式,你应该能够完全控制时间。
有一些很好的工具。下面是一些Java的摘要。
一些好的静态分析工具包括FindBugs(提供了一些有用的提示)、JLint、Java Pathfinder (JPF & JPF2)和Bogor。
multithreaddtc是一个非常好的动态分析工具(集成到JUnit中),您必须在其中设置自己的测试用例。
IBM研究院的竞赛很有趣。它通过插入各种线程修改行为(例如sleep & yield)来检测你的代码,试图随机发现错误。
SPIN是对Java(和其他)组件建模的一个非常酷的工具,但是您需要一些有用的框架。它很难使用,但如果你知道如何使用它,它是非常强大的。相当多的工具在底层使用SPIN。
multithreaddtc可能是最主流的,但是上面列出的一些静态分析工具绝对值得一看。
它并不完美,但我用c#写了这个帮助程序:
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace Proto.Promises.Tests.Threading
{
public class ThreadHelper
{
public static readonly int multiThreadCount = Environment.ProcessorCount * 100;
private static readonly int[] offsets = new int[] { 0, 10, 100, 1000 };
private readonly Stack<Task> _executingTasks = new Stack<Task>(multiThreadCount);
private readonly Barrier _barrier = new Barrier(1);
private int _currentParticipants = 0;
private readonly TimeSpan _timeout;
public ThreadHelper() : this(TimeSpan.FromSeconds(10)) { } // 10 second timeout should be enough for most cases.
public ThreadHelper(TimeSpan timeout)
{
_timeout = timeout;
}
/// <summary>
/// Execute the action multiple times in parallel threads.
/// </summary>
public void ExecuteMultiActionParallel(Action action)
{
for (int i = 0; i < multiThreadCount; ++i)
{
AddParallelAction(action);
}
ExecutePendingParallelActions();
}
/// <summary>
/// Execute the action once in a separate thread.
/// </summary>
public void ExecuteSingleAction(Action action)
{
AddParallelAction(action);
ExecutePendingParallelActions();
}
/// <summary>
/// Add an action to be run in parallel.
/// </summary>
public void AddParallelAction(Action action)
{
var taskSource = new TaskCompletionSource<bool>();
lock (_executingTasks)
{
++_currentParticipants;
_barrier.AddParticipant();
_executingTasks.Push(taskSource.Task);
}
new Thread(() =>
{
try
{
_barrier.SignalAndWait(); // Try to make actions run in lock-step to increase likelihood of breaking race conditions.
action.Invoke();
taskSource.SetResult(true);
}
catch (Exception e)
{
taskSource.SetException(e);
}
}).Start();
}
/// <summary>
/// Runs the pending actions in parallel, attempting to run them in lock-step.
/// </summary>
public void ExecutePendingParallelActions()
{
Task[] tasks;
lock (_executingTasks)
{
_barrier.SignalAndWait();
_barrier.RemoveParticipants(_currentParticipants);
_currentParticipants = 0;
tasks = _executingTasks.ToArray();
_executingTasks.Clear();
}
try
{
if (!Task.WaitAll(tasks, _timeout))
{
throw new TimeoutException($"Action(s) timed out after {_timeout}, there may be a deadlock.");
}
}
catch (AggregateException e)
{
// Only throw one exception instead of aggregate to try to avoid overloading the test error output.
throw e.Flatten().InnerException;
}
}
/// <summary>
/// Run each action in parallel multiple times with differing offsets for each run.
/// <para/>The number of runs is 4^actions.Length, so be careful if you don't want the test to run too long.
/// </summary>
/// <param name="expandToProcessorCount">If true, copies each action on additional threads up to the processor count. This can help test more without increasing the time it takes to complete.
/// <para/>Example: 2 actions with 6 processors, runs each action 3 times in parallel.</param>
/// <param name="setup">The action to run before each parallel run.</param>
/// <param name="teardown">The action to run after each parallel run.</param>
/// <param name="actions">The actions to run in parallel.</param>
public void ExecuteParallelActionsWithOffsets(bool expandToProcessorCount, Action setup, Action teardown, params Action[] actions)
{
setup += () => { };
teardown += () => { };
int actionCount = actions.Length;
int expandCount = expandToProcessorCount ? Math.Max(Environment.ProcessorCount / actionCount, 1) : 1;
foreach (var combo in GenerateCombinations(offsets, actionCount))
{
setup.Invoke();
for (int k = 0; k < expandCount; ++k)
{
for (int i = 0; i < actionCount; ++i)
{
int offset = combo[i];
Action action = actions[i];
AddParallelAction(() =>
{
for (int j = offset; j > 0; --j) { } // Just spin in a loop for the offset.
action.Invoke();
});
}
}
ExecutePendingParallelActions();
teardown.Invoke();
}
}
// Input: [1, 2, 3], 3
// Ouput: [
// [1, 1, 1],
// [2, 1, 1],
// [3, 1, 1],
// [1, 2, 1],
// [2, 2, 1],
// [3, 2, 1],
// [1, 3, 1],
// [2, 3, 1],
// [3, 3, 1],
// [1, 1, 2],
// [2, 1, 2],
// [3, 1, 2],
// [1, 2, 2],
// [2, 2, 2],
// [3, 2, 2],
// [1, 3, 2],
// [2, 3, 2],
// [3, 3, 2],
// [1, 1, 3],
// [2, 1, 3],
// [3, 1, 3],
// [1, 2, 3],
// [2, 2, 3],
// [3, 2, 3],
// [1, 3, 3],
// [2, 3, 3],
// [3, 3, 3]
// ]
private static IEnumerable<int[]> GenerateCombinations(int[] options, int count)
{
int[] indexTracker = new int[count];
int[] combo = new int[count];
for (int i = 0; i < count; ++i)
{
combo[i] = options[0];
}
// Same algorithm as picking a combination lock.
int rollovers = 0;
while (rollovers < count)
{
yield return combo; // No need to duplicate the array since we're just reading it.
for (int i = 0; i < count; ++i)
{
int index = ++indexTracker[i];
if (index == options.Length)
{
indexTracker[i] = 0;
combo[i] = options[0];
if (i == rollovers)
{
++rollovers;
}
}
else
{
combo[i] = options[index];
break;
}
}
}
}
}
}
使用示例:
[Test]
public void DeferredMayBeBeResolvedAndPromiseAwaitedConcurrently_void0()
{
Promise.Deferred deferred = default(Promise.Deferred);
Promise promise = default(Promise);
int invokedCount = 0;
var threadHelper = new ThreadHelper();
threadHelper.ExecuteParallelActionsWithOffsets(false,
// Setup
() =>
{
invokedCount = 0;
deferred = Promise.NewDeferred();
promise = deferred.Promise;
},
// Teardown
() => Assert.AreEqual(1, invokedCount),
// Parallel Actions
() => deferred.Resolve(),
() => promise.Then(() => { Interlocked.Increment(ref invokedCount); }).Forget()
);
}