到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?
对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。
到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?
对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。
当前回答
确实很难!在我的(c++)单元测试中,我按照使用的并发模式将其分解为几个类别:
Unit tests for classes that operate in a single thread and aren't thread aware -- easy, test as usual. Unit tests for Monitor objects (those that execute synchronized methods in the callers' thread of control) that expose a synchronized public API -- instantiate multiple mock threads that exercise the API. Construct scenarios that exercise internal conditions of the passive object. Include one longer running test that basically beats the heck out of it from multiple threads for a long period of time. This is unscientific I know but it does build confidence. Unit tests for Active objects (those that encapsulate their own thread or threads of control) -- similar to #2 above with variations depending on the class design. Public API may be blocking or non-blocking, callers may obtain futures, data may arrive at queues or need to be dequeued. There are many combinations possible here; white box away. Still requires multiple mock threads to make calls to the object under test.
题外话:
在我所做的内部开发人员培训中,我教授了并发的支柱和这两种模式,作为思考和分解并发问题的主要框架。显然还有更先进的概念,但我发现这组基础知识可以帮助工程师摆脱困境。正如上面所描述的,它还会导致代码更具单元可测试性。
其他回答
近年来,在为几个项目编写线程处理代码时,我多次遇到过这个问题。我提供了一个迟来的答案,因为大多数其他答案虽然提供了替代方案,但实际上并没有回答关于测试的问题。我的答案是针对多线程代码没有替代方案的情况;为了完整性,我将讨论代码设计问题,但也将讨论单元测试。
编写可测试的多线程代码
首先要做的是将生产线程处理代码与所有执行实际数据处理的代码分开。这样,数据处理就可以作为单线程代码进行测试,多线程代码所做的唯一事情就是协调线程。
The second thing to remember is that bugs in multithreaded code are probabilistic; the bugs that manifest themselves least frequently are the bugs that will sneak through into production, will be difficult to reproduce even in production, and will thus cause the biggest problems. For this reason, the standard coding approach of writing the code quickly and then debugging it until it works is a bad idea for multithreaded code; it will result in code where the easy bugs are fixed and the dangerous bugs are still there.
相反,在编写多线程代码时,必须抱着一种从一开始就避免编写错误的态度来编写代码。如果您已经正确地删除了数据处理代码,线程处理代码应该足够小——最好只有几行,最坏也就几十行——这样您就有机会在不编写错误的情况下编写它,当然也不会编写很多错误,如果您了解线程,请慢慢来,并且小心。
为多线程代码编写单元测试
一旦尽可能仔细地编写了多线程代码,仍然值得为该代码编写测试。测试的主要目的与其说是测试高度依赖于时间的竞争条件错误(不可能重复测试这种竞争条件),不如说是测试防止这种错误的锁定策略是否允许多个线程按预期进行交互。
To properly test correct locking behavior, a test must start multiple threads. To make the test repeatable, we want the interactions between the threads to happen in a predictable order. We don't want to externally synchronize the threads in the test, because that will mask bugs that could happen in production where the threads are not externally synchronized. That leaves the use of timing delays for thread synchronization, which is the technique that I have used successfully whenever I've had to write tests of multithreaded code.
If the delays are too short, then the test becomes fragile, because minor timing differences - say between different machines on which the tests may be run - may cause the timing to be off and the test to fail. What I've typically done is start with delays that cause test failures, increase the delays so that the test passes reliably on my development machine, and then double the delays beyond that so the test has a good chance of passing on other machines. This does mean that the test will take a macroscopic amount of time, though in my experience, careful test design can limit that time to no more than a dozen seconds. Since you shouldn't have very many places requiring thread coordination code in your application, that should be acceptable for your test suite.
Finally, keep track of the number of bugs caught by your test. If your test has 80% code coverage, it can be expected to catch about 80% of your bugs. If your test is well designed but finds no bugs, there's a reasonable chance that you don't have additional bugs that will only show up in production. If the test catches one or two bugs, you might still get lucky. Beyond that, and you may want to consider a careful review of or even a complete rewrite of your thread handling code, since it is likely that code still contains hidden bugs that will be very difficult to find until the code is in production, and very difficult to fix then.
有一些很好的工具。下面是一些Java的摘要。
一些好的静态分析工具包括FindBugs(提供了一些有用的提示)、JLint、Java Pathfinder (JPF & JPF2)和Bogor。
multithreaddtc是一个非常好的动态分析工具(集成到JUnit中),您必须在其中设置自己的测试用例。
IBM研究院的竞赛很有趣。它通过插入各种线程修改行为(例如sleep & yield)来检测你的代码,试图随机发现错误。
SPIN是对Java(和其他)组件建模的一个非常酷的工具,但是您需要一些有用的框架。它很难使用,但如果你知道如何使用它,它是非常强大的。相当多的工具在底层使用SPIN。
multithreaddtc可能是最主流的,但是上面列出的一些静态分析工具绝对值得一看。
等待在帮助您编写确定性单元测试时也很有用。它允许您等待系统中的某个状态更新。例如:
await().untilCall( to(myService).myMethod(), greaterThan(3) );
or
await().atMost(5,SECONDS).until(fieldIn(myObject).ofType(int.class), equalTo(1));
它还支持Scala和Groovy。
await until { something() > 4 } // Scala example
我最近发现了一个叫做Threadsafe的工具(用于Java)。它是一个静态分析工具,很像findbugs,但专门用于发现多线程问题。它不是测试的替代品,但我可以推荐它作为编写可靠的多线程Java的一部分。
它甚至可以捕捉到一些非常微妙的潜在问题,比如类包容、通过并发类访问不安全的对象以及在使用双重检查锁定范式时发现丢失的volatile修饰符。
如果您编写多线程Java,请尝试一下。
有一篇关于这个主题的文章,在示例代码中使用Rust作为语言:
https://medium.com/@polyglot_factotum/rust-concurrency-five-easy-pieces-871f1c62906a
总而言之,诀窍在于编写并发逻辑,使其对涉及多个执行线程的非确定性具有健壮性,使用通道和condvars等工具。
然后,如果这就是您构建“组件”的方式,那么测试它们的最简单方法是使用通道向它们发送消息,然后阻塞其他通道以断言组件发送某些预期的消息。
链接到的文章完全使用单元测试编写。