使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?
当前回答
要使用的方法取决于要复制的列表的内容。如果列表中包含嵌套的dict,则deepcopy是唯一有效的方法,否则答案中列出的大多数方法(slice、loop[for]、copy、extend、combine或unpack)都将在类似的时间内工作和执行(loop和deepcopy除外,这两种方法执行得最差)。
剧本
from random import randint
from time import time
import copy
item_count = 100000
def copy_type(l1: list, l2: list):
if l1 == l2:
return 'shallow'
return 'deep'
def run_time(start, end):
run = end - start
return int(run * 1000000)
def list_combine(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = [] + l1
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'combine', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_extend(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = []
l2.extend(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'extend', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_unpack(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = [*l1]
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'unpack', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_deepcopy(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = copy.deepcopy(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'deepcopy', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_copy(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = list.copy(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'copy', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_slice(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = l1[:]
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'slice', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_loop(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = []
for i in range(len(l1)):
l2.append(l1[i])
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'loop', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_list(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = list(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'list()', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
if __name__ == '__main__':
list_type = [{'list[dict]': {'test': [1, 1]}},
{'list[list]': [1, 1]}]
store = []
for data in list_type:
key = list(data.keys())[0]
store.append({key: [list_unpack(data[key]), list_extend(data[key]),
list_combine(data[key]), list_deepcopy(data[key]),
list_copy(data[key]), list_slice(data[key]),
list_loop(data[key])]})
print(store)
后果
[{"list[dict]": [
{"method": "unpack", "copy_type": "shallow", "time_µs": 56149},
{"method": "extend", "copy_type": "shallow", "time_µs": 52991},
{"method": "combine", "copy_type": "shallow", "time_µs": 53726},
{"method": "deepcopy", "copy_type": "deep", "time_µs": 2702616},
{"method": "copy", "copy_type": "shallow", "time_µs": 52204},
{"method": "slice", "copy_type": "shallow", "time_µs": 52223},
{"method": "loop", "copy_type": "shallow", "time_µs": 836928}]},
{"list[list]": [
{"method": "unpack", "copy_type": "deep", "time_µs": 52313},
{"method": "extend", "copy_type": "deep", "time_µs": 52550},
{"method": "combine", "copy_type": "deep", "time_µs": 53203},
{"method": "deepcopy", "copy_type": "deep", "time_µs": 2608560},
{"method": "copy", "copy_type": "deep", "time_µs": 53210},
{"method": "slice", "copy_type": "deep", "time_µs": 52937},
{"method": "loop", "copy_type": "deep", "time_µs": 834774}
]}]
其他回答
Python的习惯用法是newList=oldList[:]
菲利克斯已经给出了一个很好的答案,但我想我应该对各种方法进行速度比较:
10.59秒(105.9µs/itn)-copy.depcopy(旧列表)10.16秒(101.6µs/itn)-纯Python Copy()方法使用deepcopy复制类1.488秒(14.88µs/itn)-纯Python Copy()方法不复制类(仅dicts/lists/tuples)0.325秒(3.25µs/itn)-对于old_list:new_list.append(项目)中的项目0.217秒(2.17µs/itn)-[i代表old_list](列表理解)0.186秒(1.86µs/itn)-复制副本(old_list)0.075秒(0.75µs/itn)-列表(旧列表)0.053秒(0.53µs/itn)-新列表=[];新列表扩展(旧列表)0.039秒(0.39µs/itn)-old_list[:](列表切片)
所以最快的是列表切片。但请注意,与copy.deepcopy()和python版本不同,copy.copy()、list[:]和list(list)不会复制列表中的任何列表、字典和类实例,因此如果原始列表发生变化,它们也会在复制的列表中发生变化,反之亦然。
(如果有人感兴趣或想提出任何问题,以下是脚本:)
from copy import deepcopy
class old_class:
def __init__(self):
self.blah = 'blah'
class new_class(object):
def __init__(self):
self.blah = 'blah'
dignore = {str: None, unicode: None, int: None, type(None): None}
def Copy(obj, use_deepcopy=True):
t = type(obj)
if t in (list, tuple):
if t == tuple:
# Convert to a list if a tuple to
# allow assigning to when copying
is_tuple = True
obj = list(obj)
else:
# Otherwise just do a quick slice copy
obj = obj[:]
is_tuple = False
# Copy each item recursively
for x in xrange(len(obj)):
if type(obj[x]) in dignore:
continue
obj[x] = Copy(obj[x], use_deepcopy)
if is_tuple:
# Convert back into a tuple again
obj = tuple(obj)
elif t == dict:
# Use the fast shallow dict copy() method and copy any
# values which aren't immutable (like lists, dicts etc)
obj = obj.copy()
for k in obj:
if type(obj[k]) in dignore:
continue
obj[k] = Copy(obj[k], use_deepcopy)
elif t in dignore:
# Numeric or string/unicode?
# It's immutable, so ignore it!
pass
elif use_deepcopy:
obj = deepcopy(obj)
return obj
if __name__ == '__main__':
import copy
from time import time
num_times = 100000
L = [None, 'blah', 1, 543.4532,
['foo'], ('bar',), {'blah': 'blah'},
old_class(), new_class()]
t = time()
for i in xrange(num_times):
Copy(L)
print 'Custom Copy:', time()-t
t = time()
for i in xrange(num_times):
Copy(L, use_deepcopy=False)
print 'Custom Copy Only Copying Lists/Tuples/Dicts (no classes):', time()-t
t = time()
for i in xrange(num_times):
copy.copy(L)
print 'copy.copy:', time()-t
t = time()
for i in xrange(num_times):
copy.deepcopy(L)
print 'copy.deepcopy:', time()-t
t = time()
for i in xrange(num_times):
L[:]
print 'list slicing [:]:', time()-t
t = time()
for i in xrange(num_times):
list(L)
print 'list(L):', time()-t
t = time()
for i in xrange(num_times):
[i for i in L]
print 'list expression(L):', time()-t
t = time()
for i in xrange(num_times):
a = []
a.extend(L)
print 'list extend:', time()-t
t = time()
for i in xrange(num_times):
a = []
for y in L:
a.append(y)
print 'list append:', time()-t
t = time()
for i in xrange(num_times):
a = []
a.extend(i for i in L)
print 'generator expression extend:', time()-t
通过id和gc查看内存的一个稍微实用的视角。
>>> b = a = ['hell', 'word']
>>> c = ['hell', 'word']
>>> id(a), id(b), id(c)
(4424020872, 4424020872, 4423979272)
| |
-----------
>>> id(a[0]), id(b[0]), id(c[0])
(4424018328, 4424018328, 4424018328) # all referring to same 'hell'
| | |
-----------------------
>>> id(a[0][0]), id(b[0][0]), id(c[0][0])
(4422785208, 4422785208, 4422785208) # all referring to same 'h'
| | |
-----------------------
>>> a[0] += 'o'
>>> a,b,c
(['hello', 'word'], ['hello', 'word'], ['hell', 'word']) # b changed too
>>> id(a[0]), id(b[0]), id(c[0])
(4424018384, 4424018384, 4424018328) # augmented assignment changed a[0],b[0]
| |
-----------
>>> b = a = ['hell', 'word']
>>> id(a[0]), id(b[0]), id(c[0])
(4424018328, 4424018328, 4424018328) # the same hell
| | |
-----------------------
>>> import gc
>>> gc.get_referrers(a[0])
[['hell', 'word'], ['hell', 'word']] # one copy belong to a,b, the another for c
>>> gc.get_referrers(('hell'))
[['hell', 'word'], ['hell', 'word'], ('hell', None)] # ('hello', None)
所有其他贡献者都给出了很好的答案,当你有一个单一维度(水平化)列表时,这些方法是有效的,但是在目前提到的方法中,只有copy.deepcopy()可以克隆/复制列表,而当你使用多维嵌套列表(列表列表)时,它不会指向嵌套列表对象。虽然菲利克斯·克林在他的回答中提到了这一点,但这个问题还有一点问题,可能还有一个使用内置程序的解决方案,这可能会证明是深度复制的更快替代方案。
虽然new_list=old_list[:],copy.copy(old_list)'和Py3k old_list.copy()适用于单层列表,但它们恢复为指向嵌套在old_list和new_list中的列表对象,对其中一个列表对象的更改将在另一个列表中永久化。
编辑:新信息曝光
正如Aaron Hall和PM 2Ring所指出的那样,使用eval()不仅是一个坏主意,而且比copy.deepcopy()慢得多。这意味着,对于多维列表,唯一的选项是copy.deepcopy()。尽管如此,当您尝试在中等大小的多维数组上使用它时,它确实不是一个选项,因为性能会下降。我尝试使用42x42阵列来计时,这是前所未闻的,甚至对于生物信息学应用程序来说也是如此之大,我放弃了等待响应,只是开始在这篇文章中输入我的编辑。似乎唯一真正的选择就是初始化多个列表并独立处理它们。如果有人对如何处理多维列表复制有任何其他建议,将不胜感激。
正如其他人所说的那样,在多维列表中使用copy模块和copy.devcopy存在严重的性能问题。
在Python中克隆或复制列表有哪些选项?
在Python 3中,可以使用以下方法制作浅层副本:
a_copy = a_list.copy()
在Python 2和3中,您可以获得一个浅层副本,其中包含原始文件的完整切片:
a_copy = a_list[:]
解释
复制列表有两种语义方法。浅副本创建相同对象的新列表,深副本创建包含新等效对象的新的列表。
浅表副本
浅层副本仅复制列表本身,它是对列表中对象的引用的容器。如果包含的对象本身是可变的,并且其中一个对象发生了更改,则更改将反映在两个列表中。
在Python 2和3中有不同的方法来实现这一点。Python 2的方式也适用于Python 3。
Python 2
在Python 2中,制作列表的简单副本的惯用方法是使用原始列表的完整片段:
a_copy = a_list[:]
您也可以通过列表构造函数传递列表来完成相同的任务,
a_copy = list(a_list)
但是使用构造函数效率较低:
>>> timeit
>>> l = range(20)
>>> min(timeit.repeat(lambda: l[:]))
0.30504298210144043
>>> min(timeit.repeat(lambda: list(l)))
0.40698814392089844
Python 3
在Python 3中,列表获取list.copy方法:
a_copy = a_list.copy()
在Python 3.5中:
>>> import timeit
>>> l = list(range(20))
>>> min(timeit.repeat(lambda: l[:]))
0.38448613602668047
>>> min(timeit.repeat(lambda: list(l)))
0.6309100328944623
>>> min(timeit.repeat(lambda: l.copy()))
0.38122922903858125
生成另一个指针不会生成副本
使用new_list=my_list,然后在每次my_list更改时修改new_list。这是为什么?
mylist只是一个指向内存中实际列表的名称。当你说new_list=my_list时,你不是在复制,只是在添加另一个指向内存中原始列表的名称。当我们复制列表时,也会遇到类似的问题。
>>> l = [[], [], []]
>>> l_copy = l[:]
>>> l_copy
[[], [], []]
>>> l_copy[0].append('foo')
>>> l_copy
[['foo'], [], []]
>>> l
[['foo'], [], []]
列表只是指向内容的指针数组,因此浅层副本只是复制指针,因此您有两个不同的列表,但它们具有相同的内容。要复制内容,您需要一个深度副本。
深度副本
要制作列表的深度副本,在Python 2或3中,请在复制模块中使用deepcopy:
import copy
a_deep_copy = copy.deepcopy(a_list)
要演示这如何允许我们创建新的子列表:
>>> import copy
>>> l
[['foo'], [], []]
>>> l_deep_copy = copy.deepcopy(l)
>>> l_deep_copy[0].pop()
'foo'
>>> l_deep_copy
[[], [], []]
>>> l
[['foo'], [], []]
所以我们看到,深度复制的列表与原始列表完全不同。你可以滚动自己的函数,但不要。通过使用标准库的deepcopy功能,您很可能会创建一些错误。
不使用eval
你可能会看到这是一种深度复制的方式,但不要这样做:
problematic_deep_copy = eval(repr(a_list))
这是很危险的,特别是当你从一个你不信任的来源评估某件事情时。如果要复制的子元素没有一个可以求值以重现等效元素的表示,那么它就不可靠。它的性能也较差。
在64位Python 2.7中:
>>> import timeit
>>> import copy
>>> l = range(10)
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
27.55826997756958
>>> min(timeit.repeat(lambda: eval(repr(l))))
29.04534101486206
在64位Python 3.5上:
>>> import timeit
>>> import copy
>>> l = list(range(10))
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
16.84255409205798
>>> min(timeit.repeat(lambda: eval(repr(l))))
34.813894678023644
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录