使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?


当前回答

要使用的方法取决于要复制的列表的内容。如果列表中包含嵌套的dict,则deepcopy是唯一有效的方法,否则答案中列出的大多数方法(slice、loop[for]、copy、extend、combine或unpack)都将在类似的时间内工作和执行(loop和deepcopy除外,这两种方法执行得最差)。

剧本

from random import randint
from time import time
import copy

item_count = 100000

def copy_type(l1: list, l2: list):
  if l1 == l2:
    return 'shallow'
  return 'deep'

def run_time(start, end):
  run = end - start
  return int(run * 1000000)

def list_combine(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = [] + l1
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'combine', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_extend(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = []
  l2.extend(l1)
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'extend', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_unpack(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = [*l1]
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'unpack', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_deepcopy(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = copy.deepcopy(l1)
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'deepcopy', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_copy(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = list.copy(l1)
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'copy', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_slice(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = l1[:]
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'slice', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_loop(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = []
  for i in range(len(l1)):
    l2.append(l1[i])
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'loop', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

def list_list(data):
  l1 = [data for i in range(item_count)]
  start = time()
  l2 = list(l1)
  end = time()
  if type(data) == dict:
    l2[0]['test'].append(1)
  elif type(data) == list:
    l2.append(1)
  return {'method': 'list()', 'copy_type': copy_type(l1, l2), 
          'time_µs': run_time(start, end)}

if __name__ == '__main__':
  list_type = [{'list[dict]': {'test': [1, 1]}}, 
          {'list[list]': [1, 1]}]
  store = []
  for data in list_type:
    key = list(data.keys())[0]
    store.append({key: [list_unpack(data[key]), list_extend(data[key]), 
                list_combine(data[key]), list_deepcopy(data[key]), 
                list_copy(data[key]), list_slice(data[key]),           
                list_loop(data[key])]})
  print(store)

后果

[{"list[dict]": [
  {"method": "unpack", "copy_type": "shallow", "time_µs": 56149},
  {"method": "extend", "copy_type": "shallow", "time_µs": 52991},
  {"method": "combine", "copy_type": "shallow", "time_µs": 53726},
  {"method": "deepcopy", "copy_type": "deep", "time_µs": 2702616},
  {"method": "copy", "copy_type": "shallow", "time_µs": 52204},
  {"method": "slice", "copy_type": "shallow", "time_µs": 52223},
  {"method": "loop", "copy_type": "shallow", "time_µs": 836928}]},
{"list[list]": [
  {"method": "unpack", "copy_type": "deep", "time_µs": 52313},
  {"method": "extend", "copy_type": "deep", "time_µs": 52550},
  {"method": "combine", "copy_type": "deep", "time_µs": 53203},
  {"method": "deepcopy", "copy_type": "deep", "time_µs": 2608560},
  {"method": "copy", "copy_type": "deep", "time_µs": 53210},
  {"method": "slice", "copy_type": "deep", "time_µs": 52937},
  {"method": "loop", "copy_type": "deep", "time_µs": 834774}
]}]

其他回答

通过id和gc查看内存的一个稍微实用的视角。

>>> b = a = ['hell', 'word']
>>> c = ['hell', 'word']

>>> id(a), id(b), id(c)
(4424020872, 4424020872, 4423979272) 
     |           |
      -----------

>>> id(a[0]), id(b[0]), id(c[0])
(4424018328, 4424018328, 4424018328) # all referring to same 'hell'
     |           |           |
      -----------------------

>>> id(a[0][0]), id(b[0][0]), id(c[0][0])
(4422785208, 4422785208, 4422785208) # all referring to same 'h'
     |           |           |
      -----------------------

>>> a[0] += 'o'
>>> a,b,c
(['hello', 'word'], ['hello', 'word'], ['hell', 'word'])  # b changed too
>>> id(a[0]), id(b[0]), id(c[0])
(4424018384, 4424018384, 4424018328) # augmented assignment changed a[0],b[0]
     |           |
      -----------

>>> b = a = ['hell', 'word']
>>> id(a[0]), id(b[0]), id(c[0])
(4424018328, 4424018328, 4424018328) # the same hell
     |           |           |
      -----------------------

>>> import gc
>>> gc.get_referrers(a[0]) 
[['hell', 'word'], ['hell', 'word']]  # one copy belong to a,b, the another for c
>>> gc.get_referrers(('hell'))
[['hell', 'word'], ['hell', 'word'], ('hell', None)] # ('hello', None) 

所有其他贡献者都给出了很好的答案,当你有一个单一维度(水平化)列表时,这些方法是有效的,但是在目前提到的方法中,只有copy.deepcopy()可以克隆/复制列表,而当你使用多维嵌套列表(列表列表)时,它不会指向嵌套列表对象。虽然菲利克斯·克林在他的回答中提到了这一点,但这个问题还有一点问题,可能还有一个使用内置程序的解决方案,这可能会证明是深度复制的更快替代方案。

虽然new_list=old_list[:],copy.copy(old_list)'和Py3k old_list.copy()适用于单层列表,但它们恢复为指向嵌套在old_list和new_list中的列表对象,对其中一个列表对象的更改将在另一个列表中永久化。

编辑:新信息曝光

正如Aaron Hall和PM 2Ring所指出的那样,使用eval()不仅是一个坏主意,而且比copy.deepcopy()慢得多。这意味着,对于多维列表,唯一的选项是copy.deepcopy()。尽管如此,当您尝试在中等大小的多维数组上使用它时,它确实不是一个选项,因为性能会下降。我尝试使用42x42阵列来计时,这是前所未闻的,甚至对于生物信息学应用程序来说也是如此之大,我放弃了等待响应,只是开始在这篇文章中输入我的编辑。似乎唯一真正的选择就是初始化多个列表并独立处理它们。如果有人对如何处理多维列表复制有任何其他建议,将不胜感激。

正如其他人所说的那样,在多维列表中使用copy模块和copy.devcopy存在严重的性能问题。

new_list = my_list[:]

new_list=我的列表

试着理解这一点。假设my_list位于堆内存中的位置X,即my_list指向X。现在,通过指定new_list=my_list,可以让new_list指向X。这就是所谓的浅拷贝。

现在,如果指定new_list=my_list[:],则只需将my_list的每个对象复制到new_list。这就是所谓的深度复制。

您可以通过以下其他方式完成此操作:

new_list=列表(old_list)导入副本new_list=复制.depcopy(old_list)

在已经给出的答案中,缺少了一个独立于python版本的非常简单的方法,您可以在大多数时间使用(至少我这样做):

new_list = my_list * 1       # Solution 1 when you are not using nested lists

但是,如果my_list包含其他容器(例如,嵌套列表),则必须按照复制库中上述答案中的其他建议使用deepcopy。例如:

import copy
new_list = copy.deepcopy(my_list)   # Solution 2 when you are using nested lists

。奖励:如果您不想复制元素,请使用(AKA浅层复制):

new_list = my_list[:]

让我们了解解决方案#1和解决方案#2之间的区别

>>> a = range(5)
>>> b = a*1
>>> a,b
([0, 1, 2, 3, 4], [0, 1, 2, 3, 4])
>>> a[2] = 55
>>> a,b
([0, 1, 55, 3, 4], [0, 1, 2, 3, 4])

正如您所看到的,当我们不使用嵌套列表时,解决方案#1工作得很好。让我们检查一下当我们将解决方案#1应用于嵌套列表时会发生什么。

>>> from copy import deepcopy
>>> a = [range(i,i+4) for i in range(3)]
>>> a
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
>>> b = a*1
>>> c = deepcopy(a)
>>> for i in (a, b, c): print i
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
>>> a[2].append('99')
>>> for i in (a, b, c): print i
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5, 99]]
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5, 99]]   # Solution #1 didn't work in nested list
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]       # Solution #2 - DeepCopy worked in nested list

在Python中克隆或复制列表有哪些选项?

在Python 3中,可以使用以下方法制作浅层副本:

a_copy = a_list.copy()

在Python 2和3中,您可以获得一个浅层副本,其中包含原始文件的完整切片:

a_copy = a_list[:]

解释

复制列表有两种语义方法。浅副本创建相同对象的新列表,深副本创建包含新等效对象的新的列表。

浅表副本

浅层副本仅复制列表本身,它是对列表中对象的引用的容器。如果包含的对象本身是可变的,并且其中一个对象发生了更改,则更改将反映在两个列表中。

在Python 2和3中有不同的方法来实现这一点。Python 2的方式也适用于Python 3。

Python 2

在Python 2中,制作列表的简单副本的惯用方法是使用原始列表的完整片段:

a_copy = a_list[:]

您也可以通过列表构造函数传递列表来完成相同的任务,

a_copy = list(a_list)

但是使用构造函数效率较低:

>>> timeit
>>> l = range(20)
>>> min(timeit.repeat(lambda: l[:]))
0.30504298210144043
>>> min(timeit.repeat(lambda: list(l)))
0.40698814392089844

Python 3

在Python 3中,列表获取list.copy方法:

a_copy = a_list.copy()

在Python 3.5中:

>>> import timeit
>>> l = list(range(20))
>>> min(timeit.repeat(lambda: l[:]))
0.38448613602668047
>>> min(timeit.repeat(lambda: list(l)))
0.6309100328944623
>>> min(timeit.repeat(lambda: l.copy()))
0.38122922903858125

生成另一个指针不会生成副本

使用new_list=my_list,然后在每次my_list更改时修改new_list。这是为什么?

mylist只是一个指向内存中实际列表的名称。当你说new_list=my_list时,你不是在复制,只是在添加另一个指向内存中原始列表的名称。当我们复制列表时,也会遇到类似的问题。

>>> l = [[], [], []]
>>> l_copy = l[:]
>>> l_copy
[[], [], []]
>>> l_copy[0].append('foo')
>>> l_copy
[['foo'], [], []]
>>> l
[['foo'], [], []]

列表只是指向内容的指针数组,因此浅层副本只是复制指针,因此您有两个不同的列表,但它们具有相同的内容。要复制内容,您需要一个深度副本。

深度副本

要制作列表的深度副本,在Python 2或3中,请在复制模块中使用deepcopy:

import copy
a_deep_copy = copy.deepcopy(a_list)

要演示这如何允许我们创建新的子列表:

>>> import copy
>>> l
[['foo'], [], []]
>>> l_deep_copy = copy.deepcopy(l)
>>> l_deep_copy[0].pop()
'foo'
>>> l_deep_copy
[[], [], []]
>>> l
[['foo'], [], []]

所以我们看到,深度复制的列表与原始列表完全不同。你可以滚动自己的函数,但不要。通过使用标准库的deepcopy功能,您很可能会创建一些错误。

不使用eval

你可能会看到这是一种深度复制的方式,但不要这样做:

problematic_deep_copy = eval(repr(a_list))

这是很危险的,特别是当你从一个你不信任的来源评估某件事情时。如果要复制的子元素没有一个可以求值以重现等效元素的表示,那么它就不可靠。它的性能也较差。

在64位Python 2.7中:

>>> import timeit
>>> import copy
>>> l = range(10)
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
27.55826997756958
>>> min(timeit.repeat(lambda: eval(repr(l))))
29.04534101486206

在64位Python 3.5上:

>>> import timeit
>>> import copy
>>> l = list(range(10))
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
16.84255409205798
>>> min(timeit.repeat(lambda: eval(repr(l))))
34.813894678023644