使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?


当前回答

所有其他贡献者都给出了很好的答案,当你有一个单一维度(水平化)列表时,这些方法是有效的,但是在目前提到的方法中,只有copy.deepcopy()可以克隆/复制列表,而当你使用多维嵌套列表(列表列表)时,它不会指向嵌套列表对象。虽然菲利克斯·克林在他的回答中提到了这一点,但这个问题还有一点问题,可能还有一个使用内置程序的解决方案,这可能会证明是深度复制的更快替代方案。

虽然new_list=old_list[:],copy.copy(old_list)'和Py3k old_list.copy()适用于单层列表,但它们恢复为指向嵌套在old_list和new_list中的列表对象,对其中一个列表对象的更改将在另一个列表中永久化。

编辑:新信息曝光

正如Aaron Hall和PM 2Ring所指出的那样,使用eval()不仅是一个坏主意,而且比copy.deepcopy()慢得多。这意味着,对于多维列表,唯一的选项是copy.deepcopy()。尽管如此,当您尝试在中等大小的多维数组上使用它时,它确实不是一个选项,因为性能会下降。我尝试使用42x42阵列来计时,这是前所未闻的,甚至对于生物信息学应用程序来说也是如此之大,我放弃了等待响应,只是开始在这篇文章中输入我的编辑。似乎唯一真正的选择就是初始化多个列表并独立处理它们。如果有人对如何处理多维列表复制有任何其他建议,将不胜感激。

正如其他人所说的那样,在多维列表中使用copy模块和copy.devcopy存在严重的性能问题。

其他回答

有人告诉我Python 3.3+添加了list.copy()方法,它应该和切片一样快:

newlist = old_list.copy()

所有其他贡献者都给出了很好的答案,当你有一个单一维度(水平化)列表时,这些方法是有效的,但是在目前提到的方法中,只有copy.deepcopy()可以克隆/复制列表,而当你使用多维嵌套列表(列表列表)时,它不会指向嵌套列表对象。虽然菲利克斯·克林在他的回答中提到了这一点,但这个问题还有一点问题,可能还有一个使用内置程序的解决方案,这可能会证明是深度复制的更快替代方案。

虽然new_list=old_list[:],copy.copy(old_list)'和Py3k old_list.copy()适用于单层列表,但它们恢复为指向嵌套在old_list和new_list中的列表对象,对其中一个列表对象的更改将在另一个列表中永久化。

编辑:新信息曝光

正如Aaron Hall和PM 2Ring所指出的那样,使用eval()不仅是一个坏主意,而且比copy.deepcopy()慢得多。这意味着,对于多维列表,唯一的选项是copy.deepcopy()。尽管如此,当您尝试在中等大小的多维数组上使用它时,它确实不是一个选项,因为性能会下降。我尝试使用42x42阵列来计时,这是前所未闻的,甚至对于生物信息学应用程序来说也是如此之大,我放弃了等待响应,只是开始在这篇文章中输入我的编辑。似乎唯一真正的选择就是初始化多个列表并独立处理它们。如果有人对如何处理多维列表复制有任何其他建议,将不胜感激。

正如其他人所说的那样,在多维列表中使用copy模块和copy.devcopy存在严重的性能问题。

在Python中,请记住:

    list1 = ['apples','bananas','pineapples']
    list2 = list1

List2没有存储实际的列表,而是对list1的引用。因此,当您对list1执行任何操作时,list2也会发生变化。使用copy模块(非默认,在pip上下载)制作列表的原始副本(对于简单列表,copy.copy();对于嵌套列表,copy。deepcopy())。这将生成一个不会随第一个列表而更改的副本。

让我们从头开始,探讨这个问题。

假设您有两个列表:

list_1 = ['01', '98']
list_2 = [['01', '98']]

我们必须复制两个列表,现在从第一个列表开始:

因此,首先让我们将变量副本设置为原始列表list_1:

copy = list_1

现在,如果你认为copy复制了list_1,那么你错了。id函数可以告诉我们两个变量是否可以指向同一个对象。让我们试试看:

print(id(copy))
print(id(list_1))

输出为:

4329485320
4329485320

这两个变量是完全相同的参数。你惊讶吗?

所以我们知道,Python不会在变量中存储任何内容,变量只是引用对象,对象存储值。这里的对象是一个列表,但我们通过两个不同的变量名创建了对同一对象的两个引用。这意味着两个变量都指向同一个对象,只是名称不同。

当您执行copy=list_1时,它实际上正在执行以下操作:

在这里,图像list_1和copy是两个变量名,但两个变量的对象是相同的,即列表。

因此,如果您尝试修改复制的列表,那么它也会修改原始列表,因为那里只有一个列表,无论您是从复制的列表还是从原始列表进行修改,都会修改该列表:

copy[0] = "modify"

print(copy)
print(list_1)

输出:

['modify', '98']
['modify', '98']

所以它修改了原始列表:

现在,让我们来看看复制列表的Pythonic方法。

copy_1 = list_1[:]

该方法解决了我们遇到的第一个问题:

print(id(copy_1))
print(id(list_1))

4338792136
4338791432

因此,我们可以看到两个列表都有不同的id,这意味着两个变量都指向不同的对象。所以这里的实际情况是:

现在,让我们尝试修改列表,看看我们是否仍然面临前面的问题:

copy_1[0] = "modify"

print(list_1)
print(copy_1)

输出为:

['01', '98']
['modify', '98']

如您所见,它只修改了复制的列表。这意味着它奏效了。

你认为我们结束了吗?不,让我们尝试复制嵌套列表。

copy_2 = list_2[:]

list2应该引用另一个对象,该对象是list2的副本。让我们检查一下:

print(id((list_2)), id(copy_2))

我们得到输出:

4330403592 4330403528

现在我们可以假设两个列表都指向不同的对象,所以现在让我们尝试修改它,看看它给出了我们想要的:

copy_2[0][1] = "modify"

print(list_2, copy_2)

这为我们提供了输出:

[['01', 'modify']] [['01', 'modify']]

这可能看起来有点令人困惑,因为我们以前使用的相同方法奏效了。让我们试着理解这一点。

当您这样做时:

copy_2 = list_2[:]

你只是在复制外部列表,而不是内部列表。我们可以再次使用id函数来检查这一点。

print(id(copy_2[0]))
print(id(list_2[0]))

输出为:

4329485832
4329485832

当我们执行copy_2=list_2[:]时,会发生以下情况:

它创建列表副本,但仅创建外部列表副本,而不是嵌套列表副本。两个变量的嵌套列表都相同,因此如果您尝试修改嵌套列表,那么它也会修改原始列表,因为嵌套列表对象对于两个列表都相同。

解决方案是什么?解决方案是deepcopy函数。

from copy import deepcopy
deep = deepcopy(list_2)

让我们检查一下:

print(id((list_2)), id(deep))

4322146056 4322148040

两个外部列表都有不同的ID。让我们在内部嵌套列表上尝试一下。

print(id(deep[0]))
print(id(list_2[0]))

输出为:

4322145992
4322145800

正如您所看到的,两个ID都不同,这意味着我们可以假设两个嵌套列表现在都指向不同的对象。

这意味着当您执行deep=deepcopy(list_2)时,实际发生了什么:

两个嵌套列表都指向不同的对象,现在它们有嵌套列表的单独副本。

现在,让我们尝试修改嵌套列表,看看它是否解决了前面的问题:

deep[0][1] = "modify"
print(list_2, deep)

它输出:

[['01', '98']] [['01', 'modify']]

如您所见,它没有修改原始嵌套列表,只修改了复制的列表。

Python 3.6计时

下面是使用Python 3.6.8的计时结果。请记住,这些时间是相对的,而不是绝对的。

我坚持只做浅层复制,还添加了一些在Python 2中不可能的新方法,例如list.copy()(Python 3切片的等价物)和两种形式的列表解包(*new_list,=list和new_list=[*list]):

METHOD                TIME TAKEN
b = [*a]               2.75180600000021
b = a * 1              3.50215399999990
b = a[:]               3.78278899999986  # Python 2 winner (see above)
b = a.copy()           4.20556500000020  # Python 3 "slice equivalent" (see above)
b = []; b.extend(a)    4.68069800000012
b = a[0:len(a)]        6.84498999999959
*b, = a                7.54031799999984
b = list(a)            7.75815899999997
b = [i for i in a]    18.4886440000000
b = copy.copy(a)      18.8254879999999
b = []
for item in a:
  b.append(item)      35.4729199999997

我们可以看到,Python 2的获胜者仍然表现出色,但并没有远远超过Python 3 list.copy(),特别是考虑到后者的出色可读性。

黑马是拆包和重新包装方法(b=[*a]),它比原始切片快约25%,比其他拆包方法(*b,=a)快两倍多。

b=a*1的表现也出奇地好。

请注意,这些方法不会为列表以外的任何输入输出等效结果。它们都适用于可切片对象,少数适用于任何可迭代对象,但只有copy.copy()适用于更一般的Python对象。


以下是相关方的测试代码(此处的模板):

import timeit

COUNT = 50000000
print("Array duplicating. Tests run", COUNT, "times")
setup = 'a = [0,1,2,3,4,5,6,7,8,9]; import copy'

print("b = list(a)\t\t", timeit.timeit(stmt='b = list(a)', setup=setup, number=COUNT))
print("b = copy.copy(a)\t", timeit.timeit(stmt='b = copy.copy(a)', setup=setup, number=COUNT))
print("b = a.copy()\t\t", timeit.timeit(stmt='b = a.copy()', setup=setup, number=COUNT))
print("b = a[:]\t\t", timeit.timeit(stmt='b = a[:]', setup=setup, number=COUNT))
print("b = a[0:len(a)]\t\t", timeit.timeit(stmt='b = a[0:len(a)]', setup=setup, number=COUNT))
print("*b, = a\t\t\t", timeit.timeit(stmt='*b, = a', setup=setup, number=COUNT))
print("b = []; b.extend(a)\t", timeit.timeit(stmt='b = []; b.extend(a)', setup=setup, number=COUNT))
print("b = []; for item in a: b.append(item)\t", timeit.timeit(stmt='b = []\nfor item in a:  b.append(item)', setup=setup, number=COUNT))
print("b = [i for i in a]\t", timeit.timeit(stmt='b = [i for i in a]', setup=setup, number=COUNT))
print("b = [*a]\t\t", timeit.timeit(stmt='b = [*a]', setup=setup, number=COUNT))
print("b = a * 1\t\t", timeit.timeit(stmt='b = a * 1', setup=setup, number=COUNT))