使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?


当前回答

通过id和gc查看内存的一个稍微实用的视角。

>>> b = a = ['hell', 'word']
>>> c = ['hell', 'word']

>>> id(a), id(b), id(c)
(4424020872, 4424020872, 4423979272) 
     |           |
      -----------

>>> id(a[0]), id(b[0]), id(c[0])
(4424018328, 4424018328, 4424018328) # all referring to same 'hell'
     |           |           |
      -----------------------

>>> id(a[0][0]), id(b[0][0]), id(c[0][0])
(4422785208, 4422785208, 4422785208) # all referring to same 'h'
     |           |           |
      -----------------------

>>> a[0] += 'o'
>>> a,b,c
(['hello', 'word'], ['hello', 'word'], ['hell', 'word'])  # b changed too
>>> id(a[0]), id(b[0]), id(c[0])
(4424018384, 4424018384, 4424018328) # augmented assignment changed a[0],b[0]
     |           |
      -----------

>>> b = a = ['hell', 'word']
>>> id(a[0]), id(b[0]), id(c[0])
(4424018328, 4424018328, 4424018328) # the same hell
     |           |           |
      -----------------------

>>> import gc
>>> gc.get_referrers(a[0]) 
[['hell', 'word'], ['hell', 'word']]  # one copy belong to a,b, the another for c
>>> gc.get_referrers(('hell'))
[['hell', 'word'], ['hell', 'word'], ('hell', None)] # ('hello', None) 

其他回答

new_list=my_list实际上并没有创建第二个列表。赋值只是将引用复制到列表,而不是实际的列表,因此new_list和my_list在赋值后都引用相同的列表。

要实际复制列表,您有几个选项:

您可以使用内置的list.copy()方法(从Python 3.3开始提供):new_list=old_list.copy()您可以对其进行切片:new_list=旧列表[:]亚历克斯·马特利(Alex Martelli)(至少在2007年)对此的看法是,这是一种奇怪的语法,永远使用它都没有意义(在他看来,下一篇更具可读性)。您可以使用内置的list()构造函数:new_list=列表(old_list)您可以使用泛型copy.copy():导入副本new_list=复制副本(old_list)这比list()慢一点,因为它必须首先找到old_list的数据类型。如果您还需要复制列表中的元素,请使用genericcopy.deepcopy():导入副本new_list=复制.depcopy(old_list)显然是最慢、最需要内存的方法,但有时不可避免。这是递归操作;它将处理任意级别的嵌套列表(或其他容器)。

例子:

import copy

class Foo(object):
    def __init__(self, val):
         self.val = val

    def __repr__(self):
        return f'Foo({self.val!r})'

foo = Foo(1)

a = ['foo', foo]
b = a.copy()
c = a[:]
d = list(a)
e = copy.copy(a)
f = copy.deepcopy(a)

# edit orignal list and instance 
a.append('baz')
foo.val = 5

print(f'original: {a}\nlist.copy(): {b}\nslice: {c}\nlist(): {d}\ncopy: {e}\ndeepcopy: {f}')

结果:

original: ['foo', Foo(5), 'baz']
list.copy(): ['foo', Foo(5)]
slice: ['foo', Foo(5)]
list(): ['foo', Foo(5)]
copy: ['foo', Foo(5)]
deepcopy: ['foo', Foo(1)]

菲利克斯已经给出了一个很好的答案,但我想我应该对各种方法进行速度比较:

10.59秒(105.9µs/itn)-copy.depcopy(旧列表)10.16秒(101.6µs/itn)-纯Python Copy()方法使用deepcopy复制类1.488秒(14.88µs/itn)-纯Python Copy()方法不复制类(仅dicts/lists/tuples)0.325秒(3.25µs/itn)-对于old_list:new_list.append(项目)中的项目0.217秒(2.17µs/itn)-[i代表old_list](列表理解)0.186秒(1.86µs/itn)-复制副本(old_list)0.075秒(0.75µs/itn)-列表(旧列表)0.053秒(0.53µs/itn)-新列表=[];新列表扩展(旧列表)0.039秒(0.39µs/itn)-old_list[:](列表切片)

所以最快的是列表切片。但请注意,与copy.deepcopy()和python版本不同,copy.copy()、list[:]和list(list)不会复制列表中的任何列表、字典和类实例,因此如果原始列表发生变化,它们也会在复制的列表中发生变化,反之亦然。

(如果有人感兴趣或想提出任何问题,以下是脚本:)

from copy import deepcopy

class old_class:
    def __init__(self):
        self.blah = 'blah'

class new_class(object):
    def __init__(self):
        self.blah = 'blah'

dignore = {str: None, unicode: None, int: None, type(None): None}

def Copy(obj, use_deepcopy=True):
    t = type(obj)

    if t in (list, tuple):
        if t == tuple:
            # Convert to a list if a tuple to
            # allow assigning to when copying
            is_tuple = True
            obj = list(obj)
        else:
            # Otherwise just do a quick slice copy
            obj = obj[:]
            is_tuple = False

        # Copy each item recursively
        for x in xrange(len(obj)):
            if type(obj[x]) in dignore:
                continue
            obj[x] = Copy(obj[x], use_deepcopy)

        if is_tuple:
            # Convert back into a tuple again
            obj = tuple(obj)

    elif t == dict:
        # Use the fast shallow dict copy() method and copy any
        # values which aren't immutable (like lists, dicts etc)
        obj = obj.copy()
        for k in obj:
            if type(obj[k]) in dignore:
                continue
            obj[k] = Copy(obj[k], use_deepcopy)

    elif t in dignore:
        # Numeric or string/unicode?
        # It's immutable, so ignore it!
        pass

    elif use_deepcopy:
        obj = deepcopy(obj)
    return obj

if __name__ == '__main__':
    import copy
    from time import time

    num_times = 100000
    L = [None, 'blah', 1, 543.4532,
         ['foo'], ('bar',), {'blah': 'blah'},
         old_class(), new_class()]

    t = time()
    for i in xrange(num_times):
        Copy(L)
    print 'Custom Copy:', time()-t

    t = time()
    for i in xrange(num_times):
        Copy(L, use_deepcopy=False)
    print 'Custom Copy Only Copying Lists/Tuples/Dicts (no classes):', time()-t

    t = time()
    for i in xrange(num_times):
        copy.copy(L)
    print 'copy.copy:', time()-t

    t = time()
    for i in xrange(num_times):
        copy.deepcopy(L)
    print 'copy.deepcopy:', time()-t

    t = time()
    for i in xrange(num_times):
        L[:]
    print 'list slicing [:]:', time()-t

    t = time()
    for i in xrange(num_times):
        list(L)
    print 'list(L):', time()-t

    t = time()
    for i in xrange(num_times):
        [i for i in L]
    print 'list expression(L):', time()-t

    t = time()
    for i in xrange(num_times):
        a = []
        a.extend(L)
    print 'list extend:', time()-t

    t = time()
    for i in xrange(num_times):
        a = []
        for y in L:
            a.append(y)
    print 'list append:', time()-t

    t = time()
    for i in xrange(num_times):
        a = []
        a.extend(i for i in L)
    print 'generator expression extend:', time()-t

所有其他贡献者都给出了很好的答案,当你有一个单一维度(水平化)列表时,这些方法是有效的,但是在目前提到的方法中,只有copy.deepcopy()可以克隆/复制列表,而当你使用多维嵌套列表(列表列表)时,它不会指向嵌套列表对象。虽然菲利克斯·克林在他的回答中提到了这一点,但这个问题还有一点问题,可能还有一个使用内置程序的解决方案,这可能会证明是深度复制的更快替代方案。

虽然new_list=old_list[:],copy.copy(old_list)'和Py3k old_list.copy()适用于单层列表,但它们恢复为指向嵌套在old_list和new_list中的列表对象,对其中一个列表对象的更改将在另一个列表中永久化。

编辑:新信息曝光

正如Aaron Hall和PM 2Ring所指出的那样,使用eval()不仅是一个坏主意,而且比copy.deepcopy()慢得多。这意味着,对于多维列表,唯一的选项是copy.deepcopy()。尽管如此,当您尝试在中等大小的多维数组上使用它时,它确实不是一个选项,因为性能会下降。我尝试使用42x42阵列来计时,这是前所未闻的,甚至对于生物信息学应用程序来说也是如此之大,我放弃了等待响应,只是开始在这篇文章中输入我的编辑。似乎唯一真正的选择就是初始化多个列表并独立处理它们。如果有人对如何处理多维列表复制有任何其他建议,将不胜感激。

正如其他人所说的那样,在多维列表中使用copy模块和copy.devcopy存在严重的性能问题。

new_list = my_list[:]

new_list=我的列表

试着理解这一点。假设my_list位于堆内存中的位置X,即my_list指向X。现在,通过指定new_list=my_list,可以让new_list指向X。这就是所谓的浅拷贝。

现在,如果指定new_list=my_list[:],则只需将my_list的每个对象复制到new_list。这就是所谓的深度复制。

您可以通过以下其他方式完成此操作:

new_list=列表(old_list)导入副本new_list=复制.depcopy(old_list)

在Python中克隆或复制列表有哪些选项?

在Python 3中,可以使用以下方法制作浅层副本:

a_copy = a_list.copy()

在Python 2和3中,您可以获得一个浅层副本,其中包含原始文件的完整切片:

a_copy = a_list[:]

解释

复制列表有两种语义方法。浅副本创建相同对象的新列表,深副本创建包含新等效对象的新的列表。

浅表副本

浅层副本仅复制列表本身,它是对列表中对象的引用的容器。如果包含的对象本身是可变的,并且其中一个对象发生了更改,则更改将反映在两个列表中。

在Python 2和3中有不同的方法来实现这一点。Python 2的方式也适用于Python 3。

Python 2

在Python 2中,制作列表的简单副本的惯用方法是使用原始列表的完整片段:

a_copy = a_list[:]

您也可以通过列表构造函数传递列表来完成相同的任务,

a_copy = list(a_list)

但是使用构造函数效率较低:

>>> timeit
>>> l = range(20)
>>> min(timeit.repeat(lambda: l[:]))
0.30504298210144043
>>> min(timeit.repeat(lambda: list(l)))
0.40698814392089844

Python 3

在Python 3中,列表获取list.copy方法:

a_copy = a_list.copy()

在Python 3.5中:

>>> import timeit
>>> l = list(range(20))
>>> min(timeit.repeat(lambda: l[:]))
0.38448613602668047
>>> min(timeit.repeat(lambda: list(l)))
0.6309100328944623
>>> min(timeit.repeat(lambda: l.copy()))
0.38122922903858125

生成另一个指针不会生成副本

使用new_list=my_list,然后在每次my_list更改时修改new_list。这是为什么?

mylist只是一个指向内存中实际列表的名称。当你说new_list=my_list时,你不是在复制,只是在添加另一个指向内存中原始列表的名称。当我们复制列表时,也会遇到类似的问题。

>>> l = [[], [], []]
>>> l_copy = l[:]
>>> l_copy
[[], [], []]
>>> l_copy[0].append('foo')
>>> l_copy
[['foo'], [], []]
>>> l
[['foo'], [], []]

列表只是指向内容的指针数组,因此浅层副本只是复制指针,因此您有两个不同的列表,但它们具有相同的内容。要复制内容,您需要一个深度副本。

深度副本

要制作列表的深度副本,在Python 2或3中,请在复制模块中使用deepcopy:

import copy
a_deep_copy = copy.deepcopy(a_list)

要演示这如何允许我们创建新的子列表:

>>> import copy
>>> l
[['foo'], [], []]
>>> l_deep_copy = copy.deepcopy(l)
>>> l_deep_copy[0].pop()
'foo'
>>> l_deep_copy
[[], [], []]
>>> l
[['foo'], [], []]

所以我们看到,深度复制的列表与原始列表完全不同。你可以滚动自己的函数,但不要。通过使用标准库的deepcopy功能,您很可能会创建一些错误。

不使用eval

你可能会看到这是一种深度复制的方式,但不要这样做:

problematic_deep_copy = eval(repr(a_list))

这是很危险的,特别是当你从一个你不信任的来源评估某件事情时。如果要复制的子元素没有一个可以求值以重现等效元素的表示,那么它就不可靠。它的性能也较差。

在64位Python 2.7中:

>>> import timeit
>>> import copy
>>> l = range(10)
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
27.55826997756958
>>> min(timeit.repeat(lambda: eval(repr(l))))
29.04534101486206

在64位Python 3.5上:

>>> import timeit
>>> import copy
>>> l = list(range(10))
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
16.84255409205798
>>> min(timeit.repeat(lambda: eval(repr(l))))
34.813894678023644