我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
当前回答
这里的许多解决方案在Python 3.6中仍然存在浮点错误,并没有完全满足我个人的需求。
下面的函数接受整数或浮点数,不需要导入,也不返回浮点错误。
def frange(x, y, step):
if int(x + y + step) == (x + y + step):
r = list(range(int(x), int(y), int(step)))
else:
f = 10 ** (len(str(step)) - str(step).find('.') - 1)
rf = list(range(int(x * f), int(y * f), int(step * f)))
r = [i / f for i in rf]
return r
其他回答
range()内置函数返回一个整数值序列,所以您不能使用它来执行十进制步骤。
我会说使用while循环:
i = 0.0
while i <= 1.0:
print i
i += 0.1
如果你好奇的话,Python正在将你的0.1转换为0,这就是为什么它告诉你参数不能为0。
最佳解决方案:没有舍入误差
>>> step = .1
>>> N = 10 # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
或者,对于一组范围而不是一组数据点(例如,连续函数),使用:
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:
>>> import math
>>> def f(x):
return math.sin(x)
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]
[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505,
0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
0.7833269096274834, 0.8414709848078965]
我认为NumPy有点过头了。
[p/10 for p in range(0, 10)]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
一般来说,要做阶跃1/x直到y
x=100
y=2
[p/x for p in range(0, int(x*y))]
[0.0, 0.01, 0.02, 0.03, ..., 1.97, 1.98, 1.99]
(1/x在我测试时产生的舍入噪声更少)。
这里的许多解决方案在Python 3.6中仍然存在浮点错误,并没有完全满足我个人的需求。
下面的函数接受整数或浮点数,不需要导入,也不返回浮点错误。
def frange(x, y, step):
if int(x + y + step) == (x + y + step):
r = list(range(int(x), int(y), int(step)))
else:
f = 10 ** (len(str(step)) - str(step).find('.') - 1)
rf = list(range(int(x * f), int(y * f), int(step * f)))
r = [i / f for i in rf]
return r
你可以使用这个函数:
def frange(start,end,step):
return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))