我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
当前回答
我的版本使用原始的范围函数来创建移位的乘法指标。这允许原始的range函数使用相同的语法。 我做了两个版本,一个使用浮点,一个使用Decimal,因为我发现在某些情况下,我想避免浮点算法引入的舍入漂移。
它与range/xrange中的空集结果一致。
仅向任何一个函数传递一个数值都会将标准范围输出返回到输入参数的整数上限值(因此如果给它5.5,它将返回range(6))。
编辑:下面的代码现在可以在pypi: Franges上作为包使用
## frange.py
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
_xrange = xrange
except NameError:
_xrange = range
def frange(start, stop = None, step = 1):
"""frange generates a set of floating point values over the
range [start, stop) with step size step
frange([start,] stop [, step ])"""
if stop is None:
for x in _xrange(int(ceil(start))):
yield x
else:
# create a generator expression for the index values
indices = (i for i in _xrange(0, int((stop-start)/step)))
# yield results
for i in indices:
yield start + step*i
## drange.py
import decimal
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
_xrange = xrange
except NameError:
_xrange = range
def drange(start, stop = None, step = 1, precision = None):
"""drange generates a set of Decimal values over the
range [start, stop) with step size step
drange([start,] stop, [step [,precision]])"""
if stop is None:
for x in _xrange(int(ceil(start))):
yield x
else:
# find precision
if precision is not None:
decimal.getcontext().prec = precision
# convert values to decimals
start = decimal.Decimal(start)
stop = decimal.Decimal(stop)
step = decimal.Decimal(step)
# create a generator expression for the index values
indices = (
i for i in _xrange(
0,
((stop-start)/step).to_integral_value()
)
)
# yield results
for i in indices:
yield float(start + step*i)
## testranges.py
import frange
import drange
list(frange.frange(0, 2, 0.5)) # [0.0, 0.5, 1.0, 1.5]
list(drange.drange(0, 2, 0.5, precision = 6)) # [0.0, 0.5, 1.0, 1.5]
list(frange.frange(3)) # [0, 1, 2]
list(frange.frange(3.5)) # [0, 1, 2, 3]
list(frange.frange(0,10, -1)) # []
其他回答
这是我的解决方案,以获得浮动步长范围。 使用这个函数,不需要导入numpy,也不需要安装它。 我很确定它可以被改进和优化。请随意发表在这里。
from __future__ import division
from math import log
def xfrange(start, stop, step):
old_start = start #backup this value
digits = int(round(log(10000, 10)))+1 #get number of digits
magnitude = 10**digits
stop = int(magnitude * stop) #convert from
step = int(magnitude * step) #0.1 to 10 (e.g.)
if start == 0:
start = 10**(digits-1)
else:
start = 10**(digits)*start
data = [] #create array
#calc number of iterations
end_loop = int((stop-start)//step)
if old_start == 0:
end_loop += 1
acc = start
for i in xrange(0, end_loop):
data.append(acc/magnitude)
acc += step
return data
print xfrange(1, 2.1, 0.1)
print xfrange(0, 1.1, 0.1)
print xfrange(-1, 0.1, 0.1)
输出结果为:
[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1]
[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]
我只是一个初学者,但我有同样的问题,当模拟一些计算。这是我如何试图解决这个问题,这似乎是工作与十进制步骤。
我也很懒,所以我发现很难写我自己的范围函数。
基本上,我所做的就是将xrange(0.0, 1.0, 0.01)更改为xrange(0, 100, 1),并在循环中使用除100.0。 我也担心,是否会有舍入错误。所以我决定测试一下,是否有。现在我听说,如果一个计算中的0.01不完全是浮点数0.01比较它们应该返回False(如果我错了,请告诉我)。
所以我决定通过运行一个简短的测试来测试我的解决方案是否适用于我的范围:
for d100 in xrange(0, 100, 1):
d = d100 / 100.0
fl = float("0.00"[:4 - len(str(d100))] + str(d100))
print d, "=", fl , d == fl
每一个都输出True。
现在,如果我完全错了,请告诉我。
如果你经常这样做,你可能想保存生成的列表r
r=map(lambda x: x/10.0,range(0,10))
for i in r:
print i
这一行代码不会使代码变得混乱。step参数的符号很重要。
def frange(start, stop, step):
return [x*step+start for x in range(0,round(abs((stop-start)/step)+0.5001),
int((stop-start)/step<0)*-2+1)]
range()内置函数返回一个整数值序列,所以您不能使用它来执行十进制步骤。
我会说使用while循环:
i = 0.0
while i <= 1.0:
print i
i += 0.1
如果你好奇的话,Python正在将你的0.1转换为0,这就是为什么它告诉你参数不能为0。