我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
当前回答
我的版本使用原始的范围函数来创建移位的乘法指标。这允许原始的range函数使用相同的语法。 我做了两个版本,一个使用浮点,一个使用Decimal,因为我发现在某些情况下,我想避免浮点算法引入的舍入漂移。
它与range/xrange中的空集结果一致。
仅向任何一个函数传递一个数值都会将标准范围输出返回到输入参数的整数上限值(因此如果给它5.5,它将返回range(6))。
编辑:下面的代码现在可以在pypi: Franges上作为包使用
## frange.py
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
_xrange = xrange
except NameError:
_xrange = range
def frange(start, stop = None, step = 1):
"""frange generates a set of floating point values over the
range [start, stop) with step size step
frange([start,] stop [, step ])"""
if stop is None:
for x in _xrange(int(ceil(start))):
yield x
else:
# create a generator expression for the index values
indices = (i for i in _xrange(0, int((stop-start)/step)))
# yield results
for i in indices:
yield start + step*i
## drange.py
import decimal
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
_xrange = xrange
except NameError:
_xrange = range
def drange(start, stop = None, step = 1, precision = None):
"""drange generates a set of Decimal values over the
range [start, stop) with step size step
drange([start,] stop, [step [,precision]])"""
if stop is None:
for x in _xrange(int(ceil(start))):
yield x
else:
# find precision
if precision is not None:
decimal.getcontext().prec = precision
# convert values to decimals
start = decimal.Decimal(start)
stop = decimal.Decimal(stop)
step = decimal.Decimal(step)
# create a generator expression for the index values
indices = (
i for i in _xrange(
0,
((stop-start)/step).to_integral_value()
)
)
# yield results
for i in indices:
yield float(start + step*i)
## testranges.py
import frange
import drange
list(frange.frange(0, 2, 0.5)) # [0.0, 0.5, 1.0, 1.5]
list(drange.drange(0, 2, 0.5, precision = 6)) # [0.0, 0.5, 1.0, 1.5]
list(frange.frange(3)) # [0, 1, 2]
list(frange.frange(3.5)) # [0, 1, 2, 3]
list(frange.frange(0,10, -1)) # []
其他回答
令人惊讶的是,在Python 3文档中还没有人提到推荐的解决方案:
参见: linspace菜谱展示了如何实现适用于浮点应用程序的惰性版本的range。
一旦定义,recipe就很容易使用,不需要numpy或任何其他外部库,只需要numpy.linspace()这样的函数。注意,第三个num参数指定所需值的数量,而不是step参数,例如:
print(linspace(0, 10, 5))
# linspace(0, 10, 5)
print(list(linspace(0, 10, 5)))
# [0.0, 2.5, 5.0, 7.5, 10]
下面我引用了Andrew Barnert的完整Python 3配方的修改版本:
import collections.abc
import numbers
class linspace(collections.abc.Sequence):
"""linspace(start, stop, num) -> linspace object
Return a virtual sequence of num numbers from start to stop (inclusive).
If you need a half-open range, use linspace(start, stop, num+1)[:-1].
"""
def __init__(self, start, stop, num):
if not isinstance(num, numbers.Integral) or num <= 1:
raise ValueError('num must be an integer > 1')
self.start, self.stop, self.num = start, stop, num
self.step = (stop-start)/(num-1)
def __len__(self):
return self.num
def __getitem__(self, i):
if isinstance(i, slice):
return [self[x] for x in range(*i.indices(len(self)))]
if i < 0:
i = self.num + i
if i >= self.num:
raise IndexError('linspace object index out of range')
if i == self.num-1:
return self.stop
return self.start + i*self.step
def __repr__(self):
return '{}({}, {}, {})'.format(type(self).__name__,
self.start, self.stop, self.num)
def __eq__(self, other):
if not isinstance(other, linspace):
return False
return ((self.start, self.stop, self.num) ==
(other.start, other.stop, other.num))
def __ne__(self, other):
return not self==other
def __hash__(self):
return hash((type(self), self.start, self.stop, self.num))
增加循环的i的大小,然后在需要时减少它。
for i * 100 in range(0, 100, 10):
print i / 100.0
编辑:老实说,我不记得为什么我认为这会在语法上工作
for i in range(0, 11, 1):
print i / 10.0
这应该有期望的输出。
range()内置函数返回一个整数值序列,所以您不能使用它来执行十进制步骤。
我会说使用while循环:
i = 0.0
while i <= 1.0:
print i
i += 0.1
如果你好奇的话,Python正在将你的0.1转换为0,这就是为什么它告诉你参数不能为0。
最佳解决方案:没有舍入误差
>>> step = .1
>>> N = 10 # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
或者,对于一组范围而不是一组数据点(例如,连续函数),使用:
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:
>>> import math
>>> def f(x):
return math.sin(x)
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]
[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505,
0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
0.7833269096274834, 0.8414709848078965]
scipy有一个内置的函数arange,它泛化了Python的range()构造函数,以满足您对浮点数处理的需求。
从scipy进口安排