我设置了dict2 = dict1。当我编辑dict2时,原来的dict1也改变了。为什么?

>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}

当前回答

起初,这也让我感到困惑,因为我来自C语言背景。

在C语言中,变量是内存中具有已定义类型的位置。对变量赋值会将数据复制到变量的内存位置。

但在Python中,变量更像是指向对象的指针。因此,将一个变量赋值给另一个变量并不会产生复制,它只是使变量名指向相同的对象。

其他回答

正如其他人解释的那样,内置字典不能做你想做的事情。但是在Python2(可能还有python3)中,你可以很容易地创建一个ValueDict类,使用=进行复制,这样你就可以确保原始的类不会改变。

class ValueDict(dict):

    def __ilshift__(self, args):
        result = ValueDict(self)
        if isinstance(args, dict):
            dict.update(result, args)
        else:
            dict.__setitem__(result, *args)
        return result # Pythonic LVALUE modification

    def __irshift__(self, args):
        result = ValueDict(self)
        dict.__delitem__(result, args)
        return result # Pythonic LVALUE modification

    def __setitem__(self, k, v):
        raise AttributeError, \
            "Use \"value_dict<<='%s', ...\" instead of \"d[%s] = ...\"" % (k,k)

    def __delitem__(self, k):
        raise AttributeError, \
            "Use \"value_dict>>='%s'\" instead of \"del d[%s]" % (k,k)

    def update(self, d2):
        raise AttributeError, \
            "Use \"value_dict<<=dict2\" instead of \"value_dict.update(dict2)\""


# test
d = ValueDict()

d <<='apples', 5
d <<='pears', 8
print "d =", d

e = d
e <<='bananas', 1
print "e =", e
print "d =", d

d >>='pears'
print "d =", d
d <<={'blueberries': 2, 'watermelons': 315}
print "d =", d
print "e =", e
print "e['bananas'] =", e['bananas']


# result
d = {'apples': 5, 'pears': 8}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
d = {'apples': 5, 'pears': 8}
d = {'apples': 5}
d = {'watermelons': 315, 'blueberries': 2, 'apples': 5}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
e['bananas'] = 1

# e[0]=3
# would give:
# AttributeError: Use "value_dict<<='0', ..." instead of "d[0] = ..."

请参考这里讨论的左值修改模式:Python 2.7 -用于左值修改的干净语法。关键的观察是,str和int在Python中表现为值(即使它们实际上是不可变的对象)。在观察的同时,请注意str或int并没有什么神奇的特殊之处。dict可以以几乎相同的方式使用,我可以想到ValueDict有意义的许多情况。

你也可以用字典理解来创建一个新字典。这避免了导入副本。

dout = dict((k,v) for k,v in mydict.items())

当然,在python >= 2.7中,你可以这样做:

dout = {k:v for k,v in mydict.items()}

但对于向后比较。,上面的方法更好。

在python 3.5+上,有一种更简单的方法来实现浅拷贝,即使用** unpackaging操作符。由Pep 448定义。

>>>dict1 = {"key1": "value1", "key2": "value2"}
>>>dict2 = {**dict1}
>>>print(dict2)
{'key1': 'value1', 'key2': 'value2'}
>>>dict2["key2"] = "WHY?!"
>>>print(dict1)
{'key1': 'value1', 'key2': 'value2'}
>>>print(dict2)
{'key1': 'value1', 'key2': 'WHY?!'}

**将字典解包到一个新字典中,然后分配给dict2。

我们还可以确认每个字典都有一个不同的id。

>>>id(dict1)
 178192816

>>>id(dict2)
 178192600

如果需要深度复制,那么copy.deepcopy()仍然是可行的方法。

对于嵌套的字典,不要使用dict(srcData)或srcData.copy()或{**srcData},因为如果你改变了秒级或更多,它也会修改源字典

srcData = {
  'first': {
    'second': 'second Value'
  }
}
newData = dict(srcData) # srcData.copy() or {**srcData}
newData['first']['second'] = 'new Second Value'

print(srcData)
print(newData)

# it will print
# srcData: {'first': {'second': 'new Second Value'}}
# newData:{'first': {'second': 'new Second Value'}}

# but it should be
# srcData: {'first': {'second': 'second Value'}}
# newData:{'first': {'second': 'new Second Value'}}

deepcopy的另一个选择是使用json技巧,如Javascript json .parse(json .stringify(obj))

import json

srcData = {'first': {'second': 'second Value'}}
newData = json.loads(json.dumps(srcData))
newData['first']['second'] = 'new Second Value'

print(srcData)
print(newData)

# srcData: {'first': {'second': 'second Value'}}
# newData: {'first': {'second': 'new Second Value'}}

使用for循环进行复制:

orig = {"X2": 674.5, "X3": 245.0}

copy = {}
for key in orig:
    copy[key] = orig[key]

print(orig) # {'X2': 674.5, 'X3': 245.0}
print(copy) # {'X2': 674.5, 'X3': 245.0}
copy["X2"] = 808
print(orig) # {'X2': 674.5, 'X3': 245.0}
print(copy) # {'X2': 808, 'X3': 245.0}