Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

就地值交换

>>> a = 10
>>> b = 5
>>> a, b
(10, 5)

>>> a, b = b, a
>>> a, b
(5, 10)

赋值语句的右边是一个表达式,用于创建一个新的元组。赋值的左边立即将(未引用的)元组解包为名称a和b。

赋值之后,新的元组不被引用,并标记为垃圾收集,绑定到a和b的值已经交换。

正如Python教程中关于数据结构的部分所述,

注意,多重赋值实际上只是元组打包和序列解包的组合。

其他回答

将元组传递给内置函数

很多Python函数接受元组,但看起来并不像。例如,你想测试你的变量是否是一个数字,你可以这样做:

if isinstance (number, float) or isinstance (number, int):  
   print "yaay"

但如果你传递给我们元组,这看起来更干净:

if isinstance (number, (float, int)):  
   print "yaay"

嵌套列表推导式和生成器表达式:

[(i,j) for i in range(3) for j in range(i) ]    
((i,j) for i in range(4) for j in range(i) )

它们可以替换大量嵌套循环代码。

Monkeypatching对象

Python中的每个对象都有__dict__成员,用于存储对象的属性。所以,你可以这样做:

class Foo(object):
    def __init__(self, arg1, arg2, **kwargs):
        #do stuff with arg1 and arg2
        self.__dict__.update(kwargs)

f = Foo('arg1', 'arg2', bar=20, baz=10)
#now f is a Foo object with two extra attributes

可以利用这一点向对象任意添加属性和函数。这也可以用来创建一个快速和肮脏的结构类型。

class struct(object):
    def __init__(**kwargs):
       self.__dict__.update(kwargs)

s = struct(foo=10, bar=11, baz="i'm a string!')

懒得初始化字典中的每个字段?没有问题:

在Python > 2.3中:

from collections import defaultdict

Python中<= 2.3:

def defaultdict(type_):
    class Dict(dict):
        def __getitem__(self, key):
            return self.setdefault(key, type_())
    return Dict()

在任何版本中:

d = defaultdict(list)
for stuff in lots_of_stuff:
     d[stuff.name].append(stuff)

更新:

谢谢肯·阿诺德。我重新实现了一个更复杂的defaultdict版本。它的行为应该与标准库中的完全相同。

def defaultdict(default_factory, *args, **kw):                              

    class defaultdict(dict):

        def __missing__(self, key):
            if default_factory is None:
                raise KeyError(key)
            return self.setdefault(key, default_factory())

        def __getitem__(self, key):
            try:
                return dict.__getitem__(self, key)
            except KeyError:
                return self.__missing__(key)

    return defaultdict(*args, **kw)

一些内置的收藏夹,map(), reduce()和filter()。所有这些都非常快速和强大。