Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

私有方法和数据隐藏(封装)

在Python中有一个常见的习惯用法,即通过以下划线开头的名称来表示不打算成为类外部API一部分的方法和其他类成员。这很方便,在实践中效果很好,但它给人一种错误的印象,即Python不支持私有代码和/或数据的真正封装。事实上,Python会自动为您提供词法闭包,这使得在真正需要的情况下以更加防弹的方式封装数据变得非常容易。下面是一个使用这种技术的类的例子:

class MyClass(object):
  def __init__(self):

    privateData = {}

    self.publicData = 123

    def privateMethod(k):
      print privateData[k] + self.publicData

    def privilegedMethod():
      privateData['foo'] = "hello "
      privateMethod('foo')

    self.privilegedMethod = privilegedMethod

  def publicMethod(self):
    print self.publicData

这里有一个使用它的人为的例子:

>>> obj = MyClass()
>>> obj.publicMethod()
123
>>> obj.publicData = 'World'
>>> obj.publicMethod()
World
>>> obj.privilegedMethod()
hello World
>>> obj.privateMethod()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'privateMethod'
>>> obj.privateData
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'privateData'

关键是privateMethod和privateData根本不是obj的属性,所以它们不能从外部访问,也不会出现在dir()或类似的文件中。它们是构造函数中的局部变量,在__init__之外完全不可访问。然而,由于闭包的魔力,它们实际上是与它们关联的对象具有相同生命周期的每个实例变量,尽管除了(在本例中)调用privilegedMethod之外没有办法从外部访问它们。通常这种非常严格的封装是多余的,但有时它确实可以非常方便地保持API或名称空间的干净。

在Python 2中。在X中,拥有可变私有状态的唯一方法是使用可变对象(例如本例中的dict)。很多人都说这有多烦人。Python 3。x将通过引入PEP 3104中描述的nonlocal关键字来消除此限制。

其他回答

“解包”到函数参数

def foo(a, b, c):
        print a, b, c

bar = (3, 14, 15)
foo(*bar)

执行打印时:

3 14 15

Dict理解

>>> {i: i**2 for i in range(5)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Python文档

维基百科的条目

Python有“私有”变量

以双下划线开始而不是以双下划线结束的变量将成为私有变量,而且不仅仅是按照约定。实际上__var变成了_Classname__var,其中Classname是创建变量的类。它们不是继承的,也不能被覆盖。


>>> class A:
...     def __init__(self):
...             self.__var = 5
...     def getvar(self):
...             return self.__var
... 
>>> a = A()
>>> a.__var
Traceback (most recent call last):
  File "", line 1, in 
AttributeError: A instance has no attribute '__var'
>>> a.getvar()
5
>>> dir(a)
['_A__var', '__doc__', '__init__', '__module__', 'getvar']
>>>

对象数据模型

您可以为自己的类重写语言中的任何操作符。有关完整列表,请参阅本页。一些例子:

您可以重写任何运算符(* + - // / % ^ == < > <= >=。等等)。所有这些都是通过重写对象中的__mul__, __add__等来实现的。你甚至可以重写像__rmul__这样的东西来分别处理your_object*something_else和something_else*your_object.。是属性访问(a.b),并且可以通过使用__getattr__来重写以处理任意b。这里还包括一个使用__call__的(…)。 您可以创建自己的slice语法(a[stuff]),这可能非常复杂,与列表中使用的标准语法完全不同(numpy在其数组中有一个很好的例子,说明了这种功能的强大),使用您喜欢的、、:和…的任何组合,使用slice对象。 特别处理语言中许多关键字所发生的情况。包括del、in、import和not。 处理与对象一起调用许多内置函数时发生的情况。标准的__int__, __str__等会在这里,但__len__, __reversed__, __abs__和三个参数__pow__(用于模取幂)也会在这里。

使用不同的起始索引进行枚举

enumerate在这个答案中已经部分涉及了,但最近我发现了enumerate一个更隐藏的特性,我认为值得单独发表,而不仅仅是评论。

从Python 2.6开始,你可以在第二个参数中指定要枚举的起始索引:

>>> l = ["spam", "ham", "eggs"]
>>> list(enumerate(l))
>>> [(0, "spam"), (1, "ham"), (2, "eggs")]
>>> list(enumerate(l, 1))
>>> [(1, "spam"), (2, "ham"), (3, "eggs")]

我发现它非常有用的一个地方是当我枚举对称矩阵的元素时。由于矩阵是对称的,我可以通过只在上三角形上迭代来节省时间,但在这种情况下,我必须在内部for循环中使用不同的起始索引来正确跟踪行和列的索引:

for ri, row in enumerate(matrix):
    for ci, column in enumerate(matrix[ri:], ri):
        # ci now refers to the proper column index

奇怪的是,enumerate的这种行为在help(enumerate)中没有记录,只有在线文档中有记录。