Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

在列表推导式中交错if和for

>>> [(x, y) for x in range(4) if x % 2 == 1 for y in range(4)]
[(1, 0), (1, 1), (1, 2), (1, 3), (3, 0), (3, 1), (3, 2), (3, 3)]

直到我学了哈斯克尔,我才意识到这一点。

其他回答

一些内置的收藏夹,map(), reduce()和filter()。所有这些都非常快速和强大。

从2.5开始字典有一个特殊的方法__missing__,用于调用缺少的项:

>>> class MyDict(dict):
...  def __missing__(self, key):
...   self[key] = rv = []
...   return rv
... 
>>> m = MyDict()
>>> m["foo"].append(1)
>>> m["foo"].append(2)
>>> dict(m)
{'foo': [1, 2]}

在集合中还有一个名为defaultdict的dict子类,它做了几乎相同的事情,但对于不存在的项调用了一个不带参数的函数:

>>> from collections import defaultdict
>>> m = defaultdict(list)
>>> m["foo"].append(1)
>>> m["foo"].append(2)
>>> dict(m)
{'foo': [1, 2]}

我建议将这些字典转换为常规字典,然后再将它们传递给不需要此类子类的函数。许多代码使用d[a_key]并捕获KeyErrors来检查是否存在一个项,这将向dict添加一个新项。

为了添加更多的python模块(特别是第三方模块),大多数人似乎使用PYTHONPATH环境变量,或者在他们的site-packages目录中添加符号链接或目录。另一种方法是使用*.pth文件。以下是python官方文档的解释:

“这是最方便的修改方式 Python的搜索路径]是添加一个路径 配置文件到一个目录 已经在Python的路径上了, 通常到…/site-packages/ 目录中。路径配置文件 扩展名为。pth,每个 行必须包含一个单独的路径 将被追加到sys.path。(因为 新路径被附加到 sys。路径,模块在添加 目录将不会覆盖标准 模块。这意味着你不能使用这个 安装固定机构 标准模块的版本。)

在调试复杂的数据结构时,pprint模块非常方便。

从文件中引用…

>>> import pprint    
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=869440>,
 '',
 '/usr/local/lib/python1.5',
 '/usr/local/lib/python1.5/test',
 '/usr/local/lib/python1.5/sunos5',
 '/usr/local/lib/python1.5/sharedmodules',
 '/usr/local/lib/python1.5/tkinter']

内存管理

Python动态分配内存并使用垃圾收集来回收未使用的空间。一旦一个对象超出作用域,并且没有其他变量引用它,它将被恢复。我不必担心缓冲区溢出和缓慢增长的服务器进程。内存管理也是其他动态语言的一个特性,但Python在这方面做得非常好。

当然,我们必须注意循环引用,并保持对不再需要的对象的引用,但弱引用在这里有很大帮助。