Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

修饰符

装饰器允许将一个函数或方法包装在另一个函数中,该函数可以添加功能、修改参数或结果等。在函数定义的上方一行编写装饰符,以“at”符号(@)开始。

示例显示了一个print_args装饰器,它在调用被装饰函数之前打印函数的参数:

>>> def print_args(function):
>>>     def wrapper(*args, **kwargs):
>>>         print 'Arguments:', args, kwargs
>>>         return function(*args, **kwargs)
>>>     return wrapper

>>> @print_args
>>> def write(text):
>>>     print text

>>> write('foo')
Arguments: ('foo',) {}
foo

其他回答

>>> float('infinity')
inf
>>> float('NaN')
nan

更多信息:

http://docs.python.org/library/functions.html#float http://www.python.org/dev/peps/pep-0754/ Python nan和inf值

当你在代码文件的顶部使用正确的编码声明时,ROT13是源代码的有效编码:

#!/usr/bin/env python
# -*- coding: rot13 -*-

cevag "Uryyb fgnpxbiresybj!".rapbqr("rot13")

零参数和可变参数

Lambda函数通常用于将一个值快速转换为另一个值,但它们也可以用于将值包装在函数中:

>>> f = lambda: 'foo'
>>> f()
'foo'

它们也可以接受常见的*args和**kwargs语法:

>>> g = lambda *args, **kwargs: args[0], kwargs['thing']
>>> g(1, 2, 3, thing='stuff')
(1, 'stuff')

只需少量的工作,线程模块就变得非常容易使用。此装饰器更改函数,使其在自己的线程中运行,返回占位符类实例,而不是常规结果。你可以通过检查placeolder来探测答案。结果或通过调用placeholder.awaitResult()来等待它。

def threadify(function):
    """
    exceptionally simple threading decorator. Just:
    >>> @threadify
    ... def longOperation(result):
    ...     time.sleep(3)
    ...     return result
    >>> A= longOperation("A has finished")
    >>> B= longOperation("B has finished")

    A doesn't have a result yet:
    >>> print A.result
    None

    until we wait for it:
    >>> print A.awaitResult()
    A has finished

    we could also wait manually - half a second more should be enough for B:
    >>> time.sleep(0.5); print B.result
    B has finished
    """
    class thr (threading.Thread,object):
        def __init__(self, *args, **kwargs):
            threading.Thread.__init__ ( self )  
            self.args, self.kwargs = args, kwargs
            self.result = None
            self.start()
        def awaitResult(self):
            self.join()
            return self.result        
        def run(self):
            self.result=function(*self.args, **self.kwargs)
    return thr

字典中无限递归的很好处理:

>>> a = {}
>>> b = {}
>>> a['b'] = b
>>> b['a'] = a
>>> print a
{'b': {'a': {...}}}