Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

不是很隐藏,但是函数有属性:

def doNothing():
    pass

doNothing.monkeys = 4
print doNothing.monkeys
4

其他回答

可读正则表达式

在Python中,您可以将正则表达式拆分为多行,命名匹配并插入注释。

示例详细语法(来自Python):

>>> pattern = """
... ^                   # beginning of string
... M{0,4}              # thousands - 0 to 4 M's
... (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                     #            or 500-800 (D, followed by 0 to 3 C's)
... (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                     #        or 50-80 (L, followed by 0 to 3 X's)
... (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                     #        or 5-8 (V, followed by 0 to 3 I's)
... $                   # end of string
... """
>>> re.search(pattern, 'M', re.VERBOSE)

命名匹配示例(摘自正则表达式HOWTO)

>>> p = re.compile(r'(?P<word>\b\w+\b)')
>>> m = p.search( '(((( Lots of punctuation )))' )
>>> m.group('word')
'Lots'

由于字符串字面值的串联,你也可以在不使用re.VERBOSE的情况下详细地编写一个正则表达式。

>>> pattern = (
...     "^"                 # beginning of string
...     "M{0,4}"            # thousands - 0 to 4 M's
...     "(CM|CD|D?C{0,3})"  # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                         #            or 500-800 (D, followed by 0 to 3 C's)
...     "(XC|XL|L?X{0,3})"  # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                         #        or 50-80 (L, followed by 0 to 3 X's)
...     "(IX|IV|V?I{0,3})"  # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                         #        or 5-8 (V, followed by 0 to 3 I's)
...     "$"                 # end of string
... )
>>> print pattern
"^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"

可以使用属性使类接口更加严格。

class C(object):
    def __init__(self, foo, bar):
        self.foo = foo # read-write property
        self.bar = bar # simple attribute

    def _set_foo(self, value):
        self._foo = value

    def _get_foo(self):
        return self._foo

    def _del_foo(self):
        del self._foo

    # any of fget, fset, fdel and doc are optional,
    # so you can make a write-only and/or delete-only property.
    foo = property(fget = _get_foo, fset = _set_foo,
                   fdel = _del_foo, doc = 'Hello, I am foo!')

class D(C):
    def _get_foo(self):
        return self._foo * 2

    def _set_foo(self, value):
        self._foo = value / 2

    foo = property(fget = _get_foo, fset = _set_foo,
                   fdel = C.foo.fdel, doc = C.foo.__doc__)

在Python 2.6和3.0中:

class C(object):
    def __init__(self, foo, bar):
        self.foo = foo # read-write property
        self.bar = bar # simple attribute

    @property
    def foo(self):
        '''Hello, I am foo!'''

        return self._foo

    @foo.setter
    def foo(self, value):
        self._foo = value

    @foo.deleter
    def foo(self):
        del self._foo

class D(C):
    @C.foo.getter
    def foo(self):
        return self._foo * 2

    @foo.setter
    def foo(self, value):
        self._foo = value / 2

要了解属性如何工作的更多信息,请参阅描述符。

Mapreduce使用map和reduce函数

这样创建一个简单的sumproduct:

def sumprod(x,y):
    return reduce(lambda a,b:a+b, map(lambda a, b: a*b,x,y))

例子:

In [2]: sumprod([1,2,3],[4,5,6])
Out[2]: 32

修饰符

装饰器允许将一个函数或方法包装在另一个函数中,该函数可以添加功能、修改参数或结果等。在函数定义的上方一行编写装饰符,以“at”符号(@)开始。

示例显示了一个print_args装饰器,它在调用被装饰函数之前打印函数的参数:

>>> def print_args(function):
>>>     def wrapper(*args, **kwargs):
>>>         print 'Arguments:', args, kwargs
>>>         return function(*args, **kwargs)
>>>     return wrapper

>>> @print_args
>>> def write(text):
>>>     print text

>>> write('foo')
Arguments: ('foo',) {}
foo

列举

用enumerate包装一个可迭代对象,它将生成项目及其索引。

例如:


>>> a = ['a', 'b', 'c', 'd', 'e']
>>> for index, item in enumerate(a): print index, item
...
0 a
1 b
2 c
3 d
4 e
>>>

引用:

Python教程循环技术 Python文档-内置函数-枚举 PEP 279