Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

>>> float('infinity')
inf
>>> float('NaN')
nan

更多信息:

http://docs.python.org/library/functions.html#float http://www.python.org/dev/peps/pep-0754/ Python nan和inf值

其他回答

虽然不是很python化,但可以使用print来写入文件

打印>>outFile, 'I am Being Written'

解释:

这种形式有时被称为 “打印雪佛龙。”在这种形式中, 第一个表达式>后>必须 求值为“类文件”对象, 具体来说,一个对象具有 如上所述编写()方法。 有了这个扩展形式, 随后的表达式被打印到 这个文件对象。如果第一个 表达式的值为None sys。的文件使用Stdout 输出。

三元运算符

>>> 'ham' if True else 'spam'
'ham'
>>> 'ham' if False else 'spam'
'spam'

这是在2.5中添加的,在此之前你可以使用:

>>> True and 'ham' or 'spam'
'ham'
>>> False and 'ham' or 'spam'
'spam'

然而,如果你想要处理的值被认为是假的,有一个区别:

>>> [] if True else 'spam'
[]
>>> True and [] or 'spam'
'spam'

如果在函数中使用exec,变量查找规则将发生巨大变化。闭包不再可能,但Python允许在函数中使用任意标识符。这为您提供了一个“可修改的locals()”,并可用于星型导入标识符。缺点是,它会使每次查找都变慢,因为变量最终会在字典中而不是在帧中的槽中结束:

>>> def f():
...  exec "a = 42"
...  return a
... 
>>> def g():
...  a = 42
...  return a
... 
>>> import dis
>>> dis.dis(f)
  2           0 LOAD_CONST               1 ('a = 42')
              3 LOAD_CONST               0 (None)
              6 DUP_TOP             
              7 EXEC_STMT           

  3           8 LOAD_NAME                0 (a)
             11 RETURN_VALUE        
>>> dis.dis(g)
  2           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (a)

  3           6 LOAD_FAST                0 (a)
              9 RETURN_VALUE        

可读正则表达式

在Python中,您可以将正则表达式拆分为多行,命名匹配并插入注释。

示例详细语法(来自Python):

>>> pattern = """
... ^                   # beginning of string
... M{0,4}              # thousands - 0 to 4 M's
... (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                     #            or 500-800 (D, followed by 0 to 3 C's)
... (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                     #        or 50-80 (L, followed by 0 to 3 X's)
... (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                     #        or 5-8 (V, followed by 0 to 3 I's)
... $                   # end of string
... """
>>> re.search(pattern, 'M', re.VERBOSE)

命名匹配示例(摘自正则表达式HOWTO)

>>> p = re.compile(r'(?P<word>\b\w+\b)')
>>> m = p.search( '(((( Lots of punctuation )))' )
>>> m.group('word')
'Lots'

由于字符串字面值的串联,你也可以在不使用re.VERBOSE的情况下详细地编写一个正则表达式。

>>> pattern = (
...     "^"                 # beginning of string
...     "M{0,4}"            # thousands - 0 to 4 M's
...     "(CM|CD|D?C{0,3})"  # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                         #            or 500-800 (D, followed by 0 to 3 C's)
...     "(XC|XL|L?X{0,3})"  # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                         #        or 50-80 (L, followed by 0 to 3 X's)
...     "(IX|IV|V?I{0,3})"  # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                         #        or 5-8 (V, followed by 0 to 3 I's)
...     "$"                 # end of string
... )
>>> print pattern
"^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"

一些内置的收藏夹,map(), reduce()和filter()。所有这些都非常快速和强大。