Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

对象实例的方法替换

您可以替换已经创建的对象实例的方法。它允许你创建具有不同(例外)功能的对象实例:

>>> class C(object):
...     def fun(self):
...         print "C.a", self
...
>>> inst = C()
>>> inst.fun()  # C.a method is executed
C.a <__main__.C object at 0x00AE74D0>
>>> instancemethod = type(C.fun)
>>>
>>> def fun2(self):
...     print "fun2", self
...
>>> inst.fun = instancemethod(fun2, inst, C)  # Now we are replace C.a by fun2
>>> inst.fun()  # ... and fun2 is executed
fun2 <__main__.C object at 0x00AE74D0>

C.a在inst实例中被fun2()取代(self没有改变)。

或者,我们也可以使用new模块,但它自Python 2.6起就被贬低了:

>>> def fun3(self):
...     print "fun3", self
...
>>> import new
>>> inst.fun = new.instancemethod(fun3, inst, C)
>>> inst.fun()
fun3 <__main__.C object at 0x00AE74D0>

节点:这个解决方案不应该被用作继承机制的一般替代!但在某些特定的情况下(调试、模拟),它可能非常方便。

警告:此解决方案不适用于内置类型和使用插槽的新样式类。

其他回答

能够替换甚至像文件删除,文件打开等-语言库的直接操作。这在测试时是一个巨大的优势。你不必把所有东西都包装在复杂的容器里。只需要替换一个函数/方法就可以了。这也被称为猴子修补。

动态添加的属性

如果您想通过调用来向类添加一些属性,这可能会很有用。这可以通过重写__getattribute__成员函数来实现,该成员函数在使用点操作数时被调用。让我们看一个虚拟类为例:

class Dummy(object):
    def __getattribute__(self, name):
        f = lambda: 'Hello with %s'%name
        return f

当你实例化一个Dummy对象并进行方法调用时,你会得到以下结果:

>>> d = Dummy()
>>> d.b()
'Hello with b'

最后,您甚至可以为您的类设置属性,以便动态定义它。如果你使用Python web框架,想通过解析属性名来进行查询,这可能很有用。

我在github上有一个要点,这个简单的代码和一个朋友在Ruby上做的等效代码。

保重!

发电机

我认为很多刚开始学习Python的开发人员在没有真正掌握生成器的用途或了解其功能的情况下就忽略了它们。直到我读了David M. Beazley关于生成器的PyCon演示(在这里可以找到),我才意识到它们是多么有用(真的是必不可少)。这个演示对我来说是一种全新的编程方式,我把它推荐给任何对生成器没有深入了解的人。

私有方法和数据隐藏(封装)

在Python中有一个常见的习惯用法,即通过以下划线开头的名称来表示不打算成为类外部API一部分的方法和其他类成员。这很方便,在实践中效果很好,但它给人一种错误的印象,即Python不支持私有代码和/或数据的真正封装。事实上,Python会自动为您提供词法闭包,这使得在真正需要的情况下以更加防弹的方式封装数据变得非常容易。下面是一个使用这种技术的类的例子:

class MyClass(object):
  def __init__(self):

    privateData = {}

    self.publicData = 123

    def privateMethod(k):
      print privateData[k] + self.publicData

    def privilegedMethod():
      privateData['foo'] = "hello "
      privateMethod('foo')

    self.privilegedMethod = privilegedMethod

  def publicMethod(self):
    print self.publicData

这里有一个使用它的人为的例子:

>>> obj = MyClass()
>>> obj.publicMethod()
123
>>> obj.publicData = 'World'
>>> obj.publicMethod()
World
>>> obj.privilegedMethod()
hello World
>>> obj.privateMethod()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'privateMethod'
>>> obj.privateData
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'privateData'

关键是privateMethod和privateData根本不是obj的属性,所以它们不能从外部访问,也不会出现在dir()或类似的文件中。它们是构造函数中的局部变量,在__init__之外完全不可访问。然而,由于闭包的魔力,它们实际上是与它们关联的对象具有相同生命周期的每个实例变量,尽管除了(在本例中)调用privilegedMethod之外没有办法从外部访问它们。通常这种非常严格的封装是多余的,但有时它确实可以非常方便地保持API或名称空间的干净。

在Python 2中。在X中,拥有可变私有状态的唯一方法是使用可变对象(例如本例中的dict)。很多人都说这有多烦人。Python 3。x将通过引入PEP 3104中描述的nonlocal关键字来消除此限制。

链接比较操作符:

>>> x = 5
>>> 1 < x < 10
True
>>> 10 < x < 20 
False
>>> x < 10 < x*10 < 100
True
>>> 10 > x <= 9
True
>>> 5 == x > 4
True

如果你认为它在做1 < x,结果是True,然后比较True < 10,这也是True,那么不,这真的不是发生的事情(见最后一个例子)。它实际上转化为1 < x和x < 10,以及x < 10和10 < x*10和x*10 < 100,但是类型更少,每个项只计算一次。