我想知道是否有一种方法可以通过分析图像数据来确定图像是否模糊。


是的,它是。计算快速傅里叶变换并分析结果。傅里叶变换告诉你图像中出现了哪些频率。如果有少量的高频,那么图像是模糊的。

定义术语“低”和“高”取决于你。

编辑:

正如评论中所述,如果你想用一个浮点数来表示给定图像的模糊度,你必须计算出一个合适的度量。

尼基的回答提供了这样一个衡量标准。将图像与拉普拉斯核进行卷积:

   1
1 -4  1
   1

并且在输出上使用一个健壮的最大度量来获得一个可以用于阈值的数字。在计算拉普拉斯函数之前尽量避免平滑过多的图像,因为你只会发现平滑后的图像确实是模糊的:-)。


估计图像清晰度的另一种非常简单的方法是使用拉普拉斯(或LoG)滤波器,并简单地选择最大值。如果你期待噪音,使用像99.9%分位数这样的稳健测量可能会更好(即选择第n高的对比度而不是最高的对比度)。如果你希望图像亮度变化,你还应该包括一个预处理步骤来标准化图像亮度/对比度(例如直方图均衡化)。

我已经在Mathematica中实现了Simon的建议,并在一些测试图像上进行了尝试:

第一个测试使用不同内核大小的高斯滤波器模糊测试图像,然后计算模糊图像的FFT,并取90%最高频率的平均值:

testFft[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   fft = Fourier[ImageData[blurred]];
   {w, h} = Dimensions[fft];
   windowSize = Round[w/2.1];
   Mean[Flatten[(Abs[
       fft[[w/2 - windowSize ;; w/2 + windowSize, 
         h/2 - windowSize ;; h/2 + windowSize]]])]]
   ), {r, 0, 10, 0.5}]

得到对数图:

5条线代表5张测试图像,X轴代表高斯滤波半径。图像是递减的,因此FFT是一个很好的度量清晰度的方法。

这是“最高LoG”模糊估计器的代码:它简单地应用一个LoG过滤器,并返回过滤结果中最亮的像素:

testLaplacian[img_] := Table[
  (
   blurred = GaussianFilter[img, r];
   Max[Flatten[ImageData[LaplacianGaussianFilter[blurred, 1]]]];
   ), {r, 0, 10, 0.5}]

得到对数图:

这里未模糊图像的传播稍微好一点(2.5 vs 3.3),主要是因为这种方法只使用图像中最强的对比度,而FFT本质上是整个图像的平均值。函数的减少速度也更快,所以设置一个“模糊”阈值可能更容易。


在一些自动对焦镜头的工作中,我遇到了一组非常有用的检测图像焦点的算法。它是在MATLAB中实现的,但大多数函数都很容易通过filter2D移植到OpenCV中。

它基本上是许多焦点测量算法的一个调查实现。如果您想阅读原始论文,代码中提供了对算法作者的引用。Pertuz等人2012年的论文。通过对焦点形状测量算子(SFF)的分析,对所有这些测量算子及其性能(包括应用于SFF的速度和精度)进行了回顾。

编辑:添加MATLAB代码,以防链接死亡。

function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of 
%an image. It may be invoked as:
%
%   FM = fmeasure(Image, Method, ROI)
%
%Where 
%   Image,  is a grayscale image and FM is the computed
%           focus value.
%   Method, is the focus measure algorithm as a string.
%           see 'operators.txt' for a list of focus 
%           measure methods. 
%   ROI,    Image ROI as a rectangle [xo yo width heigth].
%           if an empty argument is passed, the whole
%           image is processed.
%
%  Said Pertuz
%  Abr/2010


if ~isempty(ROI)
    Image = imcrop(Image, ROI);
end

WSize = 15; % Size of local window (only some operators)

switch upper(Measure)
    case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        FM = AcMomentum(Image);
                
    case 'BREN' % Brenner's (Santos97)
        [M N] = size(Image);
        DH = Image;
        DV = Image;
        DH(1:M-2,:) = diff(Image,2,1);
        DV(:,1:N-2) = diff(Image,2,2);
        FM = max(DH, DV);        
        FM = FM.^2;
        FM = mean2(FM);
        
    case 'CONT' % Image contrast (Nanda2001)
        ImContrast = inline('sum(abs(x(:)-x(5)))');
        FM = nlfilter(Image, [3 3], ImContrast);
        FM = mean2(FM);
                        
    case 'CURV' % Image Curvature (Helmli2001)
        if ~isinteger(Image), Image = im2uint8(Image);
        end
        M1 = [-1 0 1;-1 0 1;-1 0 1];
        M2 = [1 0 1;1 0 1;1 0 1];
        P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
        P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
        P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
            -imfilter(Image, M2', 'replicate', 'conv')/5;
        P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
            +3*imfilter(Image, M2, 'replicate', 'conv')/10;
        FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
        FM = mean2(FM);
        
    case 'DCTE' % DCT energy ratio (Shen2006)
        FM = nlfilter(Image, [8 8], @DctRatio);
        FM = mean2(FM);
        
    case 'DCTR' % DCT reduced energy ratio (Lee2009)
        FM = nlfilter(Image, [8 8], @ReRatio);
        FM = mean2(FM);
        
    case 'GDER' % Gaussian derivative (Geusebroek2000)        
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
        Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
        FM = Rx.^2+Ry.^2;
        FM = mean2(FM);
        
    case 'GLVA' % Graylevel variance (Krotkov86)
        FM = std2(Image);
        
    case 'GLLV' %Graylevel local variance (Pech2000)        
        LVar = stdfilt(Image, ones(WSize,WSize)).^2;
        FM = std2(LVar)^2;
        
    case 'GLVN' % Normalized GLV (Santos97)
        FM = std2(Image)^2/mean2(Image);
        
    case 'GRAE' % Energy of gradient (Subbarao92a)
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = Ix.^2 + Iy.^2;
        FM = mean2(FM);
        
    case 'GRAT' % Thresholded gradient (Snatos97)
        Th = 0; %Threshold
        Ix = Image;
        Iy = Image;
        Iy(1:end-1,:) = diff(Image, 1, 1);
        Ix(:,1:end-1) = diff(Image, 1, 2);
        FM = max(abs(Ix), abs(Iy));
        FM(FM<Th)=0;
        FM = sum(FM(:))/sum(sum(FM~=0));
        
    case 'GRAS' % Squared gradient (Eskicioglu95)
        Ix = diff(Image, 1, 2);
        FM = Ix.^2;
        FM = mean2(FM);
        
    case 'HELM' %Helmli's mean method (Helmli2001)        
        MEANF = fspecial('average',[WSize WSize]);
        U = imfilter(Image, MEANF, 'replicate');
        R1 = U./Image;
        R1(Image==0)=1;
        index = (U>Image);
        FM = 1./R1;
        FM(index) = R1(index);
        FM = mean2(FM);
        
    case 'HISE' % Histogram entropy (Krotkov86)
        FM = entropy(Image);
        
    case 'HISR' % Histogram range (Firestone91)
        FM = max(Image(:))-min(Image(:));
        
           
    case 'LAPE' % Energy of laplacian (Subbarao92a)
        LAP = fspecial('laplacian');
        FM = imfilter(Image, LAP, 'replicate', 'conv');
        FM = mean2(FM.^2);
                
    case 'LAPM' % Modified Laplacian (Nayar89)
        M = [-1 2 -1];        
        Lx = imfilter(Image, M, 'replicate', 'conv');
        Ly = imfilter(Image, M', 'replicate', 'conv');
        FM = abs(Lx) + abs(Ly);
        FM = mean2(FM);
        
    case 'LAPV' % Variance of laplacian (Pech2000)
        LAP = fspecial('laplacian');
        ILAP = imfilter(Image, LAP, 'replicate', 'conv');
        FM = std2(ILAP)^2;
        
    case 'LAPD' % Diagonal laplacian (Thelen2009)
        M1 = [-1 2 -1];
        M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
        M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
        F1 = imfilter(Image, M1, 'replicate', 'conv');
        F2 = imfilter(Image, M2, 'replicate', 'conv');
        F3 = imfilter(Image, M3, 'replicate', 'conv');
        F4 = imfilter(Image, M1', 'replicate', 'conv');
        FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
        FM = mean2(FM);
        
    case 'SFIL' %Steerable filters (Minhas2009)
        % Angles = [0 45 90 135 180 225 270 315];
        N = floor(WSize/2);
        sig = N/2.5;
        [x,y] = meshgrid(-N:N, -N:N);
        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
        Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
        Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
        R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
        R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
        R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
        R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
        R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
        R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
        R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
        R(:,:,7) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
        FM = max(R,[],3);
        FM = mean2(FM);
        
    case 'SFRQ' % Spatial frequency (Eskicioglu95)
        Ix = Image;
        Iy = Image;
        Ix(:,1:end-1) = diff(Image, 1, 2);
        Iy(1:end-1,:) = diff(Image, 1, 1);
        FM = mean2(sqrt(double(Iy.^2+Ix.^2)));
        
    case 'TENG'% Tenengrad (Krotkov86)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        FM = Gx.^2 + Gy.^2;
        FM = mean2(FM);
        
    case 'TENV' % Tenengrad variance (Pech2000)
        Sx = fspecial('sobel');
        Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
        Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
        G = Gx.^2 + Gy.^2;
        FM = std2(G)^2;
        
    case 'VOLA' % Vollath's correlation (Santos97)
        Image = double(Image);
        I1 = Image; I1(1:end-1,:) = Image(2:end,:);
        I2 = Image; I2(1:end-2,:) = Image(3:end,:);
        Image = Image.*(I1-I2);
        FM = mean2(Image);
        
    case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = wrcoef2('h', C, S, 'db6', 1);   
        V = wrcoef2('v', C, S, 'db6', 1);   
        D = wrcoef2('d', C, S, 'db6', 1);   
        FM = abs(H) + abs(V) + abs(D);
        FM = mean2(FM);
        
    case 'WAVV' %Variance of  Wav...(Yang2003)
        [C,S] = wavedec2(Image, 1, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));
        V = abs(wrcoef2('v', C, S, 'db6', 1));
        D = abs(wrcoef2('d', C, S, 'db6', 1));
        FM = std2(H)^2+std2(V)+std2(D);
        
    case 'WAVR'
        [C,S] = wavedec2(Image, 3, 'db6');
        H = abs(wrcoef2('h', C, S, 'db6', 1));   
        V = abs(wrcoef2('v', C, S, 'db6', 1));   
        D = abs(wrcoef2('d', C, S, 'db6', 1)); 
        A1 = abs(wrcoef2('a', C, S, 'db6', 1));
        A2 = abs(wrcoef2('a', C, S, 'db6', 2));
        A3 = abs(wrcoef2('a', C, S, 'db6', 3));
        A = A1 + A2 + A3;
        WH = H.^2 + V.^2 + D.^2;
        WH = mean2(WH);
        WL = mean2(A);
        FM = WH/WL;
    otherwise
        error('Unknown measure %s',upper(Measure))
end
 end
%************************************************************************
function fm = AcMomentum(Image)
[M N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end

%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end

%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************

OpenCV版本的几个例子:

// OpenCV port of 'LAPM' algorithm (Nayar89)
double modifiedLaplacian(const cv::Mat& src)
{
    cv::Mat M = (Mat_<double>(3, 1) << -1, 2, -1);
    cv::Mat G = cv::getGaussianKernel(3, -1, CV_64F);

    cv::Mat Lx;
    cv::sepFilter2D(src, Lx, CV_64F, M, G);

    cv::Mat Ly;
    cv::sepFilter2D(src, Ly, CV_64F, G, M);

    cv::Mat FM = cv::abs(Lx) + cv::abs(Ly);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'LAPV' algorithm (Pech2000)
double varianceOfLaplacian(const cv::Mat& src)
{
    cv::Mat lap;
    cv::Laplacian(src, lap, CV_64F);

    cv::Scalar mu, sigma;
    cv::meanStdDev(lap, mu, sigma);

    double focusMeasure = sigma.val[0]*sigma.val[0];
    return focusMeasure;
}

// OpenCV port of 'TENG' algorithm (Krotkov86)
double tenengrad(const cv::Mat& src, int ksize)
{
    cv::Mat Gx, Gy;
    cv::Sobel(src, Gx, CV_64F, 1, 0, ksize);
    cv::Sobel(src, Gy, CV_64F, 0, 1, ksize);

    cv::Mat FM = Gx.mul(Gx) + Gy.mul(Gy);

    double focusMeasure = cv::mean(FM).val[0];
    return focusMeasure;
}

// OpenCV port of 'GLVN' algorithm (Santos97)
double normalizedGraylevelVariance(const cv::Mat& src)
{
    cv::Scalar mu, sigma;
    cv::meanStdDev(src, mu, sigma);

    double focusMeasure = (sigma.val[0]*sigma.val[0]) / mu.val[0];
    return focusMeasure;
}

不能保证这些措施是否是您的问题的最佳选择,但如果您追踪与这些措施相关的论文,它们可能会给您更多的见解。希望您觉得代码有用!我知道我说过。


我目前使用的一种方法是测量图像中边缘的分布。请看这篇论文:

@ARTICLE{Marziliano04perceptualblur,
    author = {Pina Marziliano and Frederic Dufaux and Stefan Winkler and Touradj Ebrahimi},
    title = {Perceptual blur and ringing metrics: Application to JPEG2000,” Signal Process},
    journal = {Image Commun},
    year = {2004},
    pages = {163--172} }

它通常都是付费版本,但我也看到过一些免费版本。基本上,他们在图像中定位垂直边缘,然后测量这些边缘的宽度。平均宽度给出了图像的最终模糊估计结果。较宽的边缘对应模糊的图像,反之亦然。

该问题属于无参考图像质量估计领域。如果你在谷歌Scholar上查一下,你会得到很多有用的参考资料。

EDIT

下面是nickie发布的5张图片的模糊估计图。数值越高,模糊程度越高。我使用固定大小的11x11高斯滤波器,并改变了标准偏差(使用imagemagick的convert命令来获得模糊的图像)。

如果你比较不同大小的图像,不要忘记通过图像宽度归一化,因为较大的图像会有更宽的边缘。

最后,一个重要的问题是区分艺术模糊和不必要的模糊(由对焦缺失、压缩、拍摄对象相对于相机的运动引起),但这超出了像这样简单的方法。举个艺术模糊的例子,看看莱娜的形象:莱娜在镜子里的倒影是模糊的,但她的脸是完美的聚焦。这有助于对莱纳图像进行更高的模糊估计。


基于耐克的答案。使用opencv实现基于拉普拉斯的方法很简单:

short GetSharpness(char* data, unsigned int width, unsigned int height)
{
    // assumes that your image is already in planner yuv or 8 bit greyscale
    IplImage* in = cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,1);
    IplImage* out = cvCreateImage(cvSize(width,height),IPL_DEPTH_16S,1);
    memcpy(in->imageData,data,width*height);

    // aperture size of 1 corresponds to the correct matrix
    cvLaplace(in, out, 1);

    short maxLap = -32767;
    short* imgData = (short*)out->imageData;
    for(int i =0;i<(out->imageSize/2);i++)
    {
        if(imgData[i] > maxLap) maxLap = imgData[i];
    }

    cvReleaseImage(&in);
    cvReleaseImage(&out);
    return maxLap;
}

将返回一个短消息,指示检测到的最大锐度,根据我对真实世界样本的测试,这是一个很好的指标,说明相机是否对焦。不足为奇的是,正常值是依赖于场景的,但远不如FFT方法,它有很高的假阳性率,在我的应用程序中是有用的。


我想到了一个完全不同的解决方案。 我需要分析视频静止帧,以便在每(X)帧中找到最清晰的帧。这样,我将检测运动模糊和/或失焦图像。

我最终使用了Canny边缘检测,我得到了非常非常好的结果,几乎每一种视频(与尼基的方法,我有数字化的VHS视频和沉重的交错视频的问题)。

我通过在原始图像上设置感兴趣区域(ROI)来优化性能。

使用EmguCV:

//Convert image using Canny
using (Image<Gray, byte> imgCanny = imgOrig.Canny(225, 175))
{
    //Count the number of pixel representing an edge
    int nCountCanny = imgCanny.CountNonzero()[0];

    //Compute a sharpness grade:
    //< 1.5 = blurred, in movement
    //de 1.5 à 6 = acceptable
    //> 6 =stable, sharp
    double dSharpness = (nCountCanny * 1000.0 / (imgCanny.Cols * imgCanny.Rows));
}

在高度重视的期刊(IEEE Transactions on Image Processing)上发表的两种方法的Matlab代码可在这里获得:https://ivulab.asu.edu/software

检查CPBDM和JNBM算法。如果你检查代码,它并不难移植,顺便说一下,它是基于Marzialiano的方法作为基本特征。


我在matlab中使用FFT实现了它,并检查FFT的直方图,计算平均值和STD,还可以做拟合函数

fa =  abs(fftshift(fft(sharp_img)));
fb = abs(fftshift(fft(blured_img)));

f1=20*log10(0.001+fa);
f2=20*log10(0.001+fb);

figure,imagesc(f1);title('org')
figure,imagesc(f2);title('blur')

figure,hist(f1(:),100);title('org')
figure,hist(f2(:),100);title('blur')

mf1=mean(f1(:));
mf2=mean(f2(:));

mfd1=median(f1(:));
mfd2=median(f2(:));

sf1=std(f1(:));
sf2=std(f2(:));

上面的回答阐明了许多事情,但我认为做一个概念上的区分是有用的。

如果你对一个模糊的图像拍摄一张完美对焦的照片呢?

The blurring detection problem is only well posed when you have a reference. If you need to design, e.g., an auto-focus system, you compare a sequence of images taken with different degrees of blurring, or smoothing, and you try to find the point of minimum blurring within this set. I other words you need to cross reference the various images using one of the techniques illustrated above (basically--with various possible levels of refinement in the approach--looking for the one image with the highest high-frequency content).


谢谢妮基的拉普拉斯建议。 OpenCV文档给我指出了同样的方向: 使用python, cv2 (opencv 2.4.10)和numpy…

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
numpy.max(cv2.convertScaleAbs(cv2.Laplacian(gray, 3)))

结果在0-255之间。我发现任何超过200的东西都非常清晰,而到了100,就明显模糊了。Max从来没有真正低于20,即使它完全模糊。


在这篇文章中,我尝试了基于拉普拉斯滤波器的解决方案。这对我没有帮助。所以,我尝试了这篇文章中的解决方案,它对我的情况很好(但很慢):

import cv2

image = cv2.imread("test.jpeg")
height, width = image.shape[:2]
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def px(x, y):
    return int(gray[y, x])

sum = 0
for x in range(width-1):
    for y in range(height):
        sum += abs(px(x, y) - px(x+1, y))

较少模糊的图像具有最大和值!

你也可以通过改变步长来调整速度和准确度。

这部分

for x in range(width - 1):

你可以用这个替换

for x in range(0, width - 1, 10):

这就是我在Opencv中检测区域焦点质量的方法:

Mat grad;
int scale = 1;
int delta = 0;
int ddepth = CV_8U;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
/// Gradient X
Sobel(matFromSensor, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(matFromSensor, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
cv::Scalar mu, sigma;
cv::meanStdDev(grad, /* mean */ mu, /*stdev*/ sigma);
focusMeasure = mu.val[0] * mu.val[0];