我想知道是否有一种方法可以通过分析图像数据来确定图像是否模糊。


当前回答

在高度重视的期刊(IEEE Transactions on Image Processing)上发表的两种方法的Matlab代码可在这里获得:https://ivulab.asu.edu/software

检查CPBDM和JNBM算法。如果你检查代码,它并不难移植,顺便说一下,它是基于Marzialiano的方法作为基本特征。

其他回答

我想到了一个完全不同的解决方案。 我需要分析视频静止帧,以便在每(X)帧中找到最清晰的帧。这样,我将检测运动模糊和/或失焦图像。

我最终使用了Canny边缘检测,我得到了非常非常好的结果,几乎每一种视频(与尼基的方法,我有数字化的VHS视频和沉重的交错视频的问题)。

我通过在原始图像上设置感兴趣区域(ROI)来优化性能。

使用EmguCV:

//Convert image using Canny
using (Image<Gray, byte> imgCanny = imgOrig.Canny(225, 175))
{
    //Count the number of pixel representing an edge
    int nCountCanny = imgCanny.CountNonzero()[0];

    //Compute a sharpness grade:
    //< 1.5 = blurred, in movement
    //de 1.5 à 6 = acceptable
    //> 6 =stable, sharp
    double dSharpness = (nCountCanny * 1000.0 / (imgCanny.Cols * imgCanny.Rows));
}

这就是我在Opencv中检测区域焦点质量的方法:

Mat grad;
int scale = 1;
int delta = 0;
int ddepth = CV_8U;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
/// Gradient X
Sobel(matFromSensor, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(matFromSensor, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
cv::Scalar mu, sigma;
cv::meanStdDev(grad, /* mean */ mu, /*stdev*/ sigma);
focusMeasure = mu.val[0] * mu.val[0];

我在matlab中使用FFT实现了它,并检查FFT的直方图,计算平均值和STD,还可以做拟合函数

fa =  abs(fftshift(fft(sharp_img)));
fb = abs(fftshift(fft(blured_img)));

f1=20*log10(0.001+fa);
f2=20*log10(0.001+fb);

figure,imagesc(f1);title('org')
figure,imagesc(f2);title('blur')

figure,hist(f1(:),100);title('org')
figure,hist(f2(:),100);title('blur')

mf1=mean(f1(:));
mf2=mean(f2(:));

mfd1=median(f1(:));
mfd2=median(f2(:));

sf1=std(f1(:));
sf2=std(f2(:));

在这篇文章中,我尝试了基于拉普拉斯滤波器的解决方案。这对我没有帮助。所以,我尝试了这篇文章中的解决方案,它对我的情况很好(但很慢):

import cv2

image = cv2.imread("test.jpeg")
height, width = image.shape[:2]
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def px(x, y):
    return int(gray[y, x])

sum = 0
for x in range(width-1):
    for y in range(height):
        sum += abs(px(x, y) - px(x+1, y))

较少模糊的图像具有最大和值!

你也可以通过改变步长来调整速度和准确度。

这部分

for x in range(width - 1):

你可以用这个替换

for x in range(0, width - 1, 10):

在高度重视的期刊(IEEE Transactions on Image Processing)上发表的两种方法的Matlab代码可在这里获得:https://ivulab.asu.edu/software

检查CPBDM和JNBM算法。如果你检查代码,它并不难移植,顺便说一下,它是基于Marzialiano的方法作为基本特征。