我正在对一个科学应用程序进行数值优化。我注意到的一件事是,GCC将通过将调用pow(a,2)编译为a*a来优化它,但调用pov(a,6)并没有优化,实际上会调用库函数pow,这会大大降低性能。(相比之下,可执行icc的“英特尔C++编译器”将消除对pow(a,6)的库调用。)

我好奇的是,当我使用GCC 4.5.1和选项“-O3-lm-funroll-loops-msse4”将pow(a,6)替换为a*a*a*a*a*a时,它使用了5条多指令:

movapd  %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13

而如果我写(a*a*a)*(a*a*a),它将产生

movapd  %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm13, %xmm13

这将乘法指令的数量减少到3。icc也有类似的行为。

为什么编译器不认识这种优化技巧?


当前回答

另一个类似的情况是:大多数编译器不会将a+b+c+d优化为(a+b)+(c+d)(这是一种优化,因为第二个表达式可以更好地进行流水线处理),并按照给定的方式对其求值(即(((a+c)+d))。这也是因为角落案例:

float a = 1e35, b = 1e-5, c = -1e35, d = 1e-5;
printf("%e %e\n", a + b + c + d, (a + b) + (c + d));

这将输出1.00000e-05 0.000000e+00

其他回答

像“pow”这样的库函数通常经过精心设计,以产生最小可能的错误(在一般情况下)。这通常是用样条逼近函数实现的(根据Pascal的评论,最常见的实现似乎是使用Remez算法)

基本上是以下操作:

pow(x,y);

具有与任何单个乘法或除法中的误差大致相同大小的固有误差。

执行以下操作时:

float a=someValue;
float b=a*a*a*a*a*a;

其固有误差大于单个乘法或除法的误差的5倍(因为您组合了5个乘法)。

编译器应该非常小心它正在进行的优化:

如果将pow(a,6)优化为a*a*a*a*a*a,可能会提高性能,但会大大降低浮点数的精度。如果将a*a*a*a*a*a优化为pow(a,6),实际上可能会降低精度,因为“a”是一个特殊的值,它允许无误差的乘法(2的幂或一些小整数)如果将pow(a,6)优化为(a*a*a)*(a*a*a)或(a*a)*。

一般来说,您知道对于任意浮点值,“pow”的精度比您最终可以编写的任何函数都要高,但在某些特殊情况下,多次乘法可能具有更好的精度和性能,这取决于开发人员选择更合适的方法,最终对代码进行注释,以便其他人不会“优化”该代码。

唯一有意义的优化(个人观点,显然是GCC中没有任何特定优化或编译器标志的选择)应该是将“pow(a,2)”替换为“a*a”。这将是编译器供应商应该做的唯一明智的事情。

这个问题已经有了一些很好的答案,但为了完整起见,我想指出C标准的适用部分是5.1.2.2.3/15(与C++11标准中的1.9/9节相同)。本节指出,只有当运算符真的是结合的或可交换的时,才能重新组合它们。

另一个类似的情况是:大多数编译器不会将a+b+c+d优化为(a+b)+(c+d)(这是一种优化,因为第二个表达式可以更好地进行流水线处理),并按照给定的方式对其求值(即(((a+c)+d))。这也是因为角落案例:

float a = 1e35, b = 1e-5, c = -1e35, d = 1e-5;
printf("%e %e\n", a + b + c + d, (a + b) + (c + d));

这将输出1.00000e-05 0.000000e+00

当a为整数时,GCC实际上将a*a*a*a*a*a优化为(a*a**a)*(a*a*a)。我尝试使用以下命令:

$ echo 'int f(int x) { return x*x*x*x*x*x; }' | gcc -o - -O2 -S -masm=intel -x c -

有很多gcc标志,但没有什么花哨的。他们的意思是:从stdin读取;使用O2优化水平;输出汇编语言列表而不是二进制;该列表应使用英特尔汇编语言语法;输入是C语言(通常从输入文件扩展名推断出语言,但从stdin读取时没有文件扩展名);并写入stdout。

这是输出的重要部分。我用一些注释对其进行了注释,指出了汇编语言中的情况:

; x is in edi to begin with.  eax will be used as a temporary register.
mov  eax, edi  ; temp = x
imul eax, edi  ; temp = x * temp
imul eax, edi  ; temp = x * temp
imul eax, eax  ; temp = temp * temp

我在Linux Mint 16 Petra上使用GCC系统,这是一个Ubuntu衍生版本。以下是gcc版本:

$ gcc --version
gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1

正如其他海报所指出的,在浮点运算中,这个选项是不可能的,因为浮点运算是不相关的。

gcc实际上可以进行这种优化,即使对于浮点数也是如此。例如

double foo(double a) {
  return a*a*a*a*a*a;
}

变成

foo(double):
    mulsd   %xmm0, %xmm0
    movapd  %xmm0, %xmm1
    mulsd   %xmm0, %xmm1
    mulsd   %xmm1, %xmm0
    ret

使用-O-funcafe数学优化。但是,这种重新排序违反了IEEE-754,因此需要标记。

正如Peter Cordes在一篇评论中指出的,有符号整数可以在没有funsafe数学优化的情况下进行这种优化,因为它恰好在没有溢出的情况下有效,如果有溢出,则会出现未定义的行为。所以你得到

foo(long):
    movq    %rdi, %rax
    imulq   %rdi, %rax
    imulq   %rdi, %rax
    imulq   %rax, %rax
    ret

只需-O。对于无符号整数,这更容易,因为它们是2的模幂,因此即使在溢出的情况下也可以自由地重新排序。