我正在对一个科学应用程序进行数值优化。我注意到的一件事是,GCC将通过将调用pow(a,2)编译为a*a来优化它,但调用pov(a,6)并没有优化,实际上会调用库函数pow,这会大大降低性能。(相比之下,可执行icc的“英特尔C++编译器”将消除对pow(a,6)的库调用。)

我好奇的是,当我使用GCC 4.5.1和选项“-O3-lm-funroll-loops-msse4”将pow(a,6)替换为a*a*a*a*a*a时,它使用了5条多指令:

movapd  %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13

而如果我写(a*a*a)*(a*a*a),它将产生

movapd  %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm14, %xmm13
mulsd   %xmm13, %xmm13

这将乘法指令的数量减少到3。icc也有类似的行为。

为什么编译器不认识这种优化技巧?


当前回答

另一个类似的情况是:大多数编译器不会将a+b+c+d优化为(a+b)+(c+d)(这是一种优化,因为第二个表达式可以更好地进行流水线处理),并按照给定的方式对其求值(即(((a+c)+d))。这也是因为角落案例:

float a = 1e35, b = 1e-5, c = -1e35, d = 1e-5;
printf("%e %e\n", a + b + c + d, (a + b) + (c + d));

这将输出1.00000e-05 0.000000e+00

其他回答

当a为整数时,GCC实际上将a*a*a*a*a*a优化为(a*a**a)*(a*a*a)。我尝试使用以下命令:

$ echo 'int f(int x) { return x*x*x*x*x*x; }' | gcc -o - -O2 -S -masm=intel -x c -

有很多gcc标志,但没有什么花哨的。他们的意思是:从stdin读取;使用O2优化水平;输出汇编语言列表而不是二进制;该列表应使用英特尔汇编语言语法;输入是C语言(通常从输入文件扩展名推断出语言,但从stdin读取时没有文件扩展名);并写入stdout。

这是输出的重要部分。我用一些注释对其进行了注释,指出了汇编语言中的情况:

; x is in edi to begin with.  eax will be used as a temporary register.
mov  eax, edi  ; temp = x
imul eax, edi  ; temp = x * temp
imul eax, edi  ; temp = x * temp
imul eax, eax  ; temp = temp * temp

我在Linux Mint 16 Petra上使用GCC系统,这是一个Ubuntu衍生版本。以下是gcc版本:

$ gcc --version
gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1

正如其他海报所指出的,在浮点运算中,这个选项是不可能的,因为浮点运算是不相关的。

因为浮点数学不是关联的。浮点乘法中操作数的分组方式会影响答案的数值精度。

因此,大多数编译器对重新排序浮点计算非常保守,除非他们能够确定答案不变,或者除非你告诉他们你不在乎数值精度。例如:gcc的-fassociative math选项允许gcc重新关联浮点运算,或者甚至-fast math选项,允许更积极地权衡精度与速度。

正如Lambdageek指出的那样,浮点乘法是不相关的,你可以得到更少的精度,但当获得更好的精度时,你可以反对优化,因为你想要一个确定性的应用程序。例如,在游戏模拟客户端/服务器中,每个客户端都必须模拟相同的世界,您希望浮点计算具有确定性。

另一个类似的情况是:大多数编译器不会将a+b+c+d优化为(a+b)+(c+d)(这是一种优化,因为第二个表达式可以更好地进行流水线处理),并按照给定的方式对其求值(即(((a+c)+d))。这也是因为角落案例:

float a = 1e35, b = 1e-5, c = -1e35, d = 1e-5;
printf("%e %e\n", a + b + c + d, (a + b) + (c + d));

这将输出1.00000e-05 0.000000e+00

还没有海报提到浮动表达式的收缩(ISO C标准,6.5p8和7.12.2)。如果FP_CONTRACT pragma设置为ON,则允许编译器将诸如a*a*a*a*a*a之类的表达式视为单个操作,就好像使用单个舍入来精确计算一样。例如,编译器可以用更快更准确的内部幂函数代替它。这特别有趣,因为行为部分由程序员直接在源代码中控制,而最终用户提供的编译器选项有时可能使用错误。

FP_CONTRACT pragma的默认状态是实现定义的,因此默认情况下允许编译器进行此类优化。因此,需要严格遵循IEEE 754规则的可移植代码应该明确地将其设置为OFF。

如果编译器不支持此pragma,则必须避免任何此类优化,以防开发人员选择将其设置为OFF。

GCC不支持此pragma,但使用默认选项时,它假设它为ON;因此,对于具有硬件FMA的目标,如果要防止a*b+c转换为FMA(a,b,c),则需要提供一个选项,例如-ffp contract=off(显式地将pragma设置为off)或-std=c99(告诉GCC遵守某些c标准版本,这里是c99,因此遵循上面的段落)。过去,后一种选择并未阻止转型,这意味着GCC在这一点上不符合:https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37845